ODYNAMICS OF REAL—TIME DIGITAL SIMULATION

by

R. M. Howe

Ann Arbor, Michigan

June, 1986

Copyright (c) 1386 by

Applied Dynamics International
3800 Stone School! Road
Ann Arbor, Michigan

DYNAMICS OF REAL—TIME DIGITAL SIMULATION

CHAPTER 1
INTRODUCTION

1.1 Overview of Real—Time Digital Simulation

Simulation of physical systems using digital computers is playing an ever
increasing role in all aspects of today's technological society. In general the basis for
simulation resides in mathematical models of the systems being simulated. In the case
of continuous dynamic systems the mathematical models take the form of nonlinear
ordinary or partial differential equations. The simulation of these systems and hence
the simulation of the corresponding mathematical models can be accomplished by
numerical integration of the diffential equations.

When simulation involves “inputs and outputs in the form of real—world
continuous or discrete signals, it is necessary for the simulation to run in “real—time."
In other words, the simulation must be capable of running fast enough on the digital
computer that the computed outputs, in response to real—time inputs, occur at the
exact time these outputs would take place in the real world. A typical example of this
is the real—time flight simulator shown in Figure 1.1. It consists of a digital
simulation of the airplane equations of motion interfaced to the outputs from and
inputs to actual flight hardware that will ultimately be used to control the airplane in
flight. The system in Figure 1.1 is known as a "hardware—in—the—loop” simulation. It
can be used to check out the flight control system under a wide variety of simulated
flight conditions, all under the safe and repeatable conditions of the laboratory. In many
cases the “hardware" is a pilot, and the resulting simulation is used to evaluate the
flying qualities of the airplane along with the effectiveness of the cockpit controls and
displays. Alternatively, such a man—in—the—loop simulation can be used to train pilots
to fly the airplane and handle emergency conditions. again in a safe and controlled
laboratory environment.

Often the inputs and outputs for a hardware—in—the—loop simulation are in
continuous or analog form. In this case the continuous inputs must be converted to
digital form using A to D (analog to digital) converters, a single channel of which is

shown in the figure. The output of the A to D converter is then a data sequence, usually

with a fixed time interval h between samples of the analog input. In this case h also
becomes the step size in the numerical integration of the airplane equations of motion,
as mechanized on the digital computer. The computer outputs in the form of digital
data sequences are converted to continuous form using D to A converters, a single
channel of which is also illustrated in Figure 1.1. When the hardware is & human
operator in a piloted flight simulator, the computer inputs, converted from analog to
digital signals, represent the control displacements generated by the pilot. The
computer outputs, converted from digitali to analog signals, represent cockpit
instrument readings, inputs to the motion system (in the case of moving—base
simulators), and inputs to any visual display system.

0 h 2h 3h 4h 5h 0 h 2h 3h 4h 5h
time —» time —e
AIRPLANE
DIGITAL
AtoD > SIMULATION "0t A

FLIGHT CONTROL SYSTEM

— HARDWARE I ——

Figure 1.1. Hardware—in—the—loap flight simulation.

In addition to continuous inputs and outputs, the hardware in Figure 1.1 may have
input/output signals which are digital data sequences, as in the case of a digital flight
control system. Also, many of the input/output channels may be simple on—off signals,
each of which represent the occurrence of a discrete event.

1-2

N

There are many other examples of digital simulation involving real—time inputs
and outputs, including spacecraft simulators, land vehicle simulators, ship simulators,
process control simulators, power plant simulators, etc. As in the flight simulator
example of Figure 1.1, the hardware in the loop may be a human operator, in which case
the simulator can be used for man—systems development and evaluation, or for the
training of human operators. ‘

In real—time digital simulation the numerical integration step size h is almost
always fixed. This is necessary to insure that the computer will produce outputs at the
end of each integration step which never occur later than real time. A fixed step size
also insures compatibility with fixed sample—rate inputs and outputs. The mathe—
matical step size h must of course be chosen large enough that the computer has
sufficient available time during each step to finish the necessary calculations. On the
other hand, the step size h cannot be made too large, or the errors due to the
approximate numerical integration algorithms will cause the dynamic fidelity of the
simulation to be unacceptable. Often these dynamic errors (known as integration
truncation errors) can be reduced for a given step size h by choosing the proper
integration algorithm, by using specialized integration methods, by running fast
subsystems with sub—multiple step sizes, and by the use of other special techniques
which will be covered in this text.

In order to assess the comparitive accuracy of different integration methods and
to develop specialized integration algorithms, it is important to have a general method
of quantitative evaluation of the dynamic errors in digital simulation. Unfortunately,
there is no such method which provides generally useful results when the simulation
involves nonlinear differential equations. Fortunately, however, many if not maost
dynamic systems can be approximated as quasi—linear, time—invarient systems by
considering linearized perturbation equations with respect to steady—state or reference
solutions over limited segments of time. For example, this is precisely the technique
used 1o linearize the highly nonlinear equations of motion of an aircraft in order to
develop airframe transfer functions in the design of flight control systems.

When the differential equations are linear and the integration step size is fixed,
we can use the method of z transforms to obtain direct measures of simulation
accuracy for specific integration algorithms.* These direct measures include the frac—

* See, for example, E.G. Gilbert, "Dynamic Error Analysis of Digital and Combined
Digital—Analog Systems," Simw/ation Vol. b, No. 4, April, 1966, pp 241—-257.

1-3

tional error in the characteristic roots of the digital simulation, and the fractional
error in transfer function gain and the transfer function phase error of the digital
simulation. These latter two error measures are particularly useful in determining the
acceptability of digital system errors in hardware—in—the—loop simulations, since
they can be translated directly into gain and phase—margin errors for the closed—!oop
simulation.

In this chapter we will introduce the conventional integration algorithms which
are usually considered in real—time digital simulation. Each of the algorithms will be
examined in regard to its suitability for use with real—time inputs. This will be
followed by the development of the dynamic error measures described above. A brief
introduction to z transforms and their application to digital simulation is presented in
Chapter 2. In Chapter 3 we develop both exact and approximate asymptotic formulas
for dynamic errors in applying conventional integration algorithms to the simulation ot
quasi—linear systems. This will allow us to compare the different integration methods
and to establish accuracy/speed tradeoffs. Sampling, extrapolation and interpolation,
and their application to real—time interface systems is covered in Chapters 4 and 5.
Chapter 6 describes and analyzes special methods for simulating linear subsystems,
including the state—transition method and Tustin's method. In Chapter 7 we introduce
a modified form of Euler integration which is especially efficient in the simulation of
linear subsystems but which also can be used in the simulation of some nonlinear
systems. Chapter 8 describes a method for efficient handling of discontinuous nonlinear
functions. Finally, in Chapter 9 we describe some special techniques for improving the
performance of real—time digital simulations, including the use of multiple integration
frame rates in simulating fast subsystems and the mixing of integration methods.

It should again be noted that all of the integration methods considered here use a
fixed integration step size because of the real—time requirement. In non real—time
simulation this is not necessary, and integration algorithms are often used which vary
the step size during the solution based on some error criterion. Even in this case,
however, the step size may remain relatively fixed over significant lengths of time, so
that the dynamic analysis techniques developed here can be applied. |t may also be true
that the use of very efficient fixed—step integration algorithms may actually speed up
many non real—time simulations in comparison with variable—step methods. Any

significant speed impravement will for the same accuracy. of course, save computa—
tional cost in the non real—time environment.

1.2 introduction to Integration Algorithms

In this section we will introduce and interpret a number of integration methods
which are candidates for use in real—time digital simulation. We will assume that
the continuous dynamic system to be simulated is represented by the following non—
linear differential equation:

dX

+ = FIX.um] (1.1)

Here X is the state vector and U(t) is the input vector. For a qth—order dynamic
system with m inputs the scalar state equations can be written as

dx

dt" f [xqo Xgo o xg L ug (8 ug(®) Lup®]. k=1.2.... g (1.2)
When solving Eq. (1.1) or (1.2) using numerical integration with a fixed integration
step size h, we will be computing the vector solution X only at the discrete, equally—
spaced times O, h, 2h, 3h, At the time t = nh we denote the salution X(nh) by
X n. Similarly, we denate U(nh) by U,. To illustrate the geametric interpretation
of numerical integration we consider the simple first—order equation

dx

il (t) (1.3)

Given the value of x at t = nh, i.e., given x, . we can express xp.q . i.e., the value
of x at t = (n+1)h, by the equation

(n+1)h

Xt = Xn + | H0)dt (1.4)
nh

The integral in Eq. (1.4) is simply the area under the f(t) versus t curve between t =
nh and t = (n+1)h. as shown graphically in Figure 1.2. However. in our digital simu—
lation we do nat have a representation of the continuous time function f(t). Instead,
we have only the representation of f at the discrete times (n-1)h. nh, i.e.. fn-1-
fn..... Thus we can only approximate f(t) and hence the area under f(t) using the
available values of f at the discrete times. The method used to approximate the area
defines the type of numerical integration which will be used.

1-5

(n+1)h
(t) * ‘\./ area = [) at
AR nh
\\ VNN NN
\““' ~\.

t —» nh (n+1)h

Figure 1.2. Graphical representation of one integration step.

The simplest integration algorithm is Euler or rectangular integration. In this
methad the area is approximated by the rectangle of height fn and width h. as shown
in Figure 1.3. Thus the area is equal to h fp and the integration formula is given by

It can be shown, as we shall see in the next chapter, that the dynamic errors produc—
ed by Euler integration vary as the first power of the integration step size h,

f fnﬂ
(t area = hf,
() N \\\\/
\\ N \~ Xpey = Xp + hf
; \\\\
(n-1)h nh (n+1)h
t —»

Figure 1.3. Euler integration for the equation x = f.

A more accurate numerical integration formula is obtained by considering the
the area under the trapezoid shown in Figure 1.4. If f in the state equation (1.3) is
an explicit function of time t, then fp.q is known and the formula for trapezoidal in—

1-6

SN

f(t)

R fn+ fny
**:\\:\\\ Xmet = Xp + h 2
SN ~
: \\t\\\\
(n-1h nh (n+1h
t —»

Figure 1.4. Trapezoidal integration for the equation x = f.

tegration becomes
fn+ fny

> (1.6)

Xpy = Xp + h

On the other hand, if f in Eq. (1.3) is a function of the state x and an input u(t), i.e.
it the first—order equation is given by

-

2 ot xu®) (1.7)
then fpeq in Eq. (1.6) will involve Xnet - If fis a linear function of x, the resuiting
equation can be solved for Xne1. @S required. In this case the technique is known as
Tustin's method for simulating linear systems. However, if f is a nonlinear function
of X, the resulting implicit equation for xp,.¢ can in general only be solved by some
iterative technique. Because of uncertainties in the number of required iterations,
especially in dealing with high arder systems, implicit trapezoidal integration is gen—
erally deemed unsuitable for real—time simulation. It is used often in non real—time
simulation, particularly in the case of “stiff" systems. =

The trapezoidal integration formula of Eq. (1.6) also forms the basis for both
Runge—Kutta and Adams Moulton integration algorithms of second order, as we shall
see later in this section. In Chapter 3 we will show that the dynamic errors produced
by trapezoidal integration vary as the second power of the step size h,

The difficulties associated with implicit trapezoidal integration when salving
nanlinear state equations can be avaided by basing the incremental area under the f
versus t curve on a linear extrapolation using f, and fp-y. as shown in Figure 1.5.
The resulting integration algorithm is known as the second—order Adams—Bashforth

* Stiff systems are systems with eigenvalues ranging over many orders of magnitude.

1=7

area = hfp 412““ = fn1)

)| g - 2(3fa~fn)

Xpy = Xp + g(3fn— fn-1)

P P L T
0

(n-1h nh (n+1h
t —»

Figure 1.5. AB—2 integration for the equation x = f.

method, hereafter referred to as AB—2. The integration formula is the following:
~_ h
Xnet = Xp + 'é(3fn"fn-1) (1.8)

As a second—order method, AB—2 integration produces errors proportional to hZ

Implicit third order integration is illustrated in Figure 1.6. Here a parabola is
passed through the three points fn.1. fn and f 51 to define the incremental area from
t =nhtot = (n+1)h. This leads to the following formula:

h
Xpet = Xp +§(5fn+1+8fn - fn-1) (1.9)

As in the case of trapezoidal integration, this third—order implicit method requires
iterations to solve for x .4 when f is a function of the state x. However. a parabola

NN
|ty NN "
. l§\\\\ area =1—2(5fn+1+8fn — fn-1)

¢ h
: RN Xpey = Xn + = (5feg +8fn — fno1)
: N \\\\ 12

(n:1)h nh (n+1)h
T —»

Figure 1.6. Implicit third—order integration for the equation x = f.

1-8

can be passed through the three points fn. fn-y and fn, to allow quadratic extra—
polation over the interval from t = nh to t = (n+1)h. The resulting incremental area

leads to the third—order explicit algorithm known as AB—3 integration. From Figure
1.7 we see that the integration formula is

Xpey = Xp +%(23fn —16fpg +5F) (1.10)

The dynamic errors produced by bath AB—3 integration and implicit third—order in—
tegration vary as h3 as we shall see in Chapter 3.

fn
fr1 ewy NN
f(t) NN h
: NN area = E(Q:Hn — 16fny +5fn-2)

—
7
n

h
AN Xnep = X —(23fn — 16fp-y +5-
k\\\\\\t\ n+1 n+12(n n-1 n2)

covsssrarscnrncedy
4

(n-1h . nh (n+1h
t —»

Figure 1.7. AB—3 integration for the equation x = f.
A fourth—order implibit algorithm can be generated by passing a cubic through
the four points fne1. fn. fp1 and fp-o to define the incremental area from t = nh

to t = (n+1)h. This leads to the formula

Xt = X +2—Z(9fn-1 + 190 — 5fnq +fno) SNCRE)

The explicit AB—4 integration formuia is obtained by passing a cubic through the four
points fn, fn-1, fn-2 and fpn-3. The resulting cubic extrapolation defines the incre—
mental area from t = nh to t = (n+1)h, which leads to the AB—4 formula

Xy = xn+2—,}4(55fn—-59fn-1 +37fna —9fns) (1.12)
As expected, the dynamic errors produced by the fourth—order implicit integration

and AB—4 integration vary as h 4.
The third—order formulas in Eq. (1.9) and (1.10) form the basis for the third—

1-9

order Adams—Moulton predictor —correctar integration algorithm, hereafter refer—
red to as AM—3 integration. In the same way. Egs. (1.11) and (1.12) form the basis
for the AM—4 predictor—corrector algorithm.

In considering the Adams—Mouton algorithms, we will write the formulas for
the solution of the vector state equation as given in (1.1). In the case of AM—2 in—
tegration, a predicted value X ney- fOr the next state is computed using the AB—2
formula of Eg. (1.8). X ney 1S then used to calculate the derivative Fp,y in the trap—
ezoidal formula of Eg. (1.6). Thus the AM—2 algorithm is given by

Roe = Xn + 2 [3F(Xq.Up) = F X g Uney)] (1.13)

h -
Xpog = Xp + E[F(xnrun)"‘F(an'Unq)] (1.14)

The AM algorithms are called predictor—corrector methods, where the calculation of
X ns1 Using the AB algorithm is viewed as the predictor, and the calculation of X,y
using the implicit algorithm is viewed as the corrector.

In the same way, Egs. (1.9) and (1.10) are used to mechanize the AM—3 algo—
rithm. Thus we have

>2n¢1 = X + _[ZBF(Xn,U)—16F(x".. lUn-*l +5F(Xn-2lUn2)] (].15)
Xpot = Xn + E[sr=(>‘<,,+,.un+1)+ 8F (X, Up) — F(Xpeq-Upg)] (1.16)

for the AM—3 predictor—corrector formulas. From Egs. (1.11) and (1.12) the fol—
lowing formulas are obtained for the AM—4 predictor —corrector algorithm:

Xt = Xn +—[55F(Xn,U) =59F (X p-1- U p-t _
+37F (X pop-Upoy — 9F (X pa-Upadl - (17)

h -
Xy =Xp + ﬂ[QF(XM.Uh,,)+19F(Xn,un)

The Adams—Moulton predictor—corrector algorithms combine the accuracy of
the implicit methods with the explicit nature of the AB predictor methods. We now
turn to the consideration of some Runge—Kutta integration algorithms. We consider
first a second—order Runge—Kutta (RK—2) method also known as Heun's method. As
in the case of AM—2, we first compute an estimate, X neq - for the next state. But in

1-10

N4
A

.

r’\){r\"\(
A SN

RK—2 integration this estimate is computed using Euler integration. X n+1 is then
used to calculate the derivative Fnet in the trapezoidal formula of Eq. (1.6). The al—
gorithm is therefore given by the following two equations:

Xn = Xp + hE(Xp Up) (1.19)

h -
Xnﬂ = Xn + E[F(xnzun)4'F(an'Unq)] (LZW

oA

i An interesting variation of RK—2 integration uses Euler integration to compute
.~ X netsa- an estimate of the state halfway through the next integration step. X nets2 18

then used to compute the derivative Fneis2 at the half—integer step which, in turn,
is used to compute X ne1- The two equations for the algorithm are

-

h
Xn+1/2 = ><n +-§F(anun) (121)
Xn+1 = Xn + hF()ﬁ(n,1/2,Un+1/2) (122)

The integration method represented by Egs. (1.21) and (1.22) is better suited to

real—time digital simulation than conventional RK—2 integration, as we shall see

later in this section. For this reason we will designate it as'real—time RK—2'
Next we consider the RK—3 algorithm given by the following equations:

Fn+ Fntas =

Xpei = Xpn + h > + Foears (1.23)

or 2
h -

Xnt = Xp +Z(Fn+3Fn+2/3) (1.24)
where

Fn = F(X,.Up) (1.25)

- h B

Fntiz = F(Xn+§Fn'Un+1/3) (1.26)

~ 2h -

Fneas = F(X, + 3 Frn+173. U o) (1.27)

Here Euler integration is used to compute X n+173 = X + (h/3)F which, when sub—
stituted into Eq. (1.26), is used to calculate the derivative estimate at the one—
third frame, t%nﬂ/g. This derivative is then used with FEuler integration to compute
X ntarz = X n + (2h/3)F ne1/3 which, when substituted into Eg. (1.27), yields the de—
rivative estimate at the two—thirds frame, F n+g/3. In Eq. (1.23) Fn and Fn+gs3 are
then averaged to produce an improved estimate of F n+1/3. Which in turn is averaged

-1

with l%n+2,3 ta produge the final average derivative used in the integration formula of
Eq. (1.24).
The equations used for the RK—4 integration algorithm are the following:

Fn+Fn+22 + Fns172 +Fnsin Fnetr2 +F n+t

Xpt = Xp+h 2 2 2 (1.28)
ar 3
h . 2 -
Xpy = Xp + E(Fn + 2F q+172 + 2F prire + Frtt) : (1.29)
where
Fn = F(XnoUn) (1.30)
- h
Fntiz = F(Xp+ 3 Fn.Un+i2) (1.31)
a h -
Freiz = F(Xqp+ 5 Fn+172- U etz) (1.32)
Fart = F(Xq+ hFne12. Unet) (1.33)

Here the two half—frame derivative estimates, F sty and Foeto, and the one—
frame estimate, Fp.q. are combined as shown in Ed. (1.28) to produce the grand
average used in the integration formula in Eaq. (1.29). The derivative estimates are
calculated using Egs. (1.30) through (1.33). which in turn invalve three intermediate
Euler integration steps. Although RK—4 is frequently used as the integration method
in the numerical solution of differential equations, it is not well suited to real—time
simulation, as we shall see next. Also, it should be noted that RK—2, 3 and 4 exhibit
dynamic errors which vary, respectively, as the square, cube and fourth power of the
integration step size h.

We now turn to considering the compatibilty of the various integration methods
described in this chapter with real—time inputs. In the case of Euler integration, as
well as the AB predictar algorithms. the formulas for computing the next state X n
invalve only current and past derivatives. When the derivative depends on an external
input, as in Eq. (1.1) or Eq. (1.7), this means that only the current input U and past
inputs are required to implement the computation of the simulation output one frame
tater. This is illustrated at the top of Figure 1.8, which shows that for Euler, AB—2,
AB—3, and AB—4 integration, the real—time input Up occurs at t = nh, and the
state X ., having been computed in the previous frame, is available as a real—time
output at t = nh. Then, h seconds later, the computation of X ey has been com—
pleted and the real—time input U paq is available to initiate the next computational
frame. Clearly the inputs are never required before they occur in real time.

1-12

U n+1

v

Euler, AB—2.3.4

(n+1)h j { VERY ConPT\BLE)

time —»

U net

v

v

X n+1

Ui e me
A Lo NES et

+ o) AT

AK—2, AM—2.3.4

(n+1)h S (l\lm COHPAT\BLE)

K

v

Xn X net X pet
U+ n U nets2 U+nn
2 nh Real—Time RK—2 (n+1)h S [paT e
X}n _>‘<t+1/2 X+n,1
U+n Uners U neara l—inq
2 nh RK-3 (n+1h S {Corpp2ee]

v v

v

X ne173 X ne2s3) g
JOMREYS et grrops A wws 1
Upaz Upasz Upay U ey

v

Y

v

RK—4

(+Dh S et i)

Xn

~

v

v oY

Xtz X2 X

~

(QUF&E“»” T tor. LH —'f/‘w.f>

1—-13

v

X n+i

Figure 1.8. Input/output timing for integration algorithms.

On the other hand, RK—2 integration as defined in Egs. (1.18) and (1.20). and
the AM predictor—corrector algorithms, as defined in Egs. (1.13) through (1.18), ali
require the input U,y to implement the second and final evaluation of X .. Thus
U nhe1 is required before it is availabie in real time, as can be seen in the second dia—

gram fram the top of Figure 1.8. Thus RK—2 and the AM algorithms are not com—
patible with real—time inputs. Only by estimating U n;1 ahead in time based on U
and past values with extrapolation formulas can we use these algorithms correctly in
a real—time simulation. However, the problem is eliminated in the real—time ver—
sion of RK—2. From Eq. (1.22) we see that Up+qso. not Upeq. is required as the
input for the second half of the algorithm. From the middle diagram in Figure 1.8 it
is apparent that U n+1/2 is indeed available in real time, as required halfway through
the integration frame.

Reference to Figure 1.8 shows that RK—3, as defined in Egs. (1.24) through
(1.27). is also compatible with real—time inputs. Thus U is required and avaiable
at the start of the first pass through the state equations, U .3 at the start of the
second pass, and U 49,3 at the start of the third and final pass.

Finally, reference to Figure 1.8 and Egs. (1.29) through (1.33) shows that
RK—4 is not compatible with real time inputs. This is because U .4,y is required at
the start of the second of four passes through the state equations, a quarter frame
before it becomes available. Similarly, U p+q is required at the start of the fourth
pass through the equations, a quarter frame before it becomes available.

We conclude that of all the integration methads described thus far, only Euler,
real—time RK—2, RK—3, and the AB predictor algorithms are compatible with real—
time inputs. '

1.3 Dynamic Error Measures

The final topic considered in this introductory chapter is the development of
error measures used to compare different integration methods in the simulation of
dynamic systems. As noted earlier. we will assume that we can linearize the non—
linear state equations about some reference or equilibrium solution. Then the rela—
tionship between any scalar input—output pair can be represented in terms of the
transfer function H(s) given by

N(s)
(s=A)s=Ag)----(s=Xp)
Here we have assumed a linearized system of order n with characteristic roots Ay,

A2,An. H(s) in Eq. (1.34) can be represented in terms of a partial—fraction
expansion. Thus

Hs) = (1.34)

A, A, An

HO = o) T oy T Gy

(1.35)

where

1-14

Ag = lim (s =X)H(s) (1.36)
s A

For the case where A and A k1 FEPresent a complex—conjugate pair the two result—
ing first—order transfer functions with complex conjugate Ay and A,,, can be com—
bined into a second—order transfer function. Thus the nth—order linearized system
can be considered to be the sum of first and second—order linear subsystems. |f we
can determine the dynamic errors in simulating each of these subsystems, then by
superposition we can determine the overall dynamic error in solving the quasi—linear
version of the entire system.

We shall use two types of error measure in our analysis. The first is e, , the
fractional error in characteristic root, defined as

Here A is the equivalent characteristic root in the digital solution, whereas A is the
exact continuous—system root. For the case where) is complex, corresponding to an
underdamped second—order subsystem with damping ratio { and damped frequency

W ,. we define the damping—ratio error e, and the fractional error in frequency
e, with the following formulas:

L

» wd _
€y = g C. €w = T (1.38)

Wy
Anather useful error measure in the case of complex roots is e, . the fractional
magnitude of the root error. Thus
IN"- Al

The second type of error measure is the fractional error in the transfer function
for sinusoidal inputs. This can be determined from the z transform H*(z) of the dig—
ital system represented by the computer simulation. For sinusoidal input data se—
quences the digital—system transfer function is simply H=(er h) where W is the
input frequency, as we will show in Chapter 2 on z transforms. Then the fractional
error in transfer function is given by

He(e Wh) i

HG W) Wy
Here ey and e A represent, respectively, the real and imaginary parts of the frac—
tional error in transfer function. For error magnitudes small compared with unity ey

and e A have a particularly significant meanina, which can be understood by writing H*
and H in polar form. Thus we let H'—IH"leJN and H = |H] eJ where |H*| and N*

i
\/r A OF D\GIThL SVaTEM.

-1 = ey+je, (1.40)

1—15

are the gain and phase of the digital system. and |H| and N are the gain and phase of
the continuous system, respectively. After substitution into Eq. (1.40), we obtain

»* H* . - - H*
H =___‘eJ(N N)__1___| !

H H| HI

Here we have used a first—order power §eries approximation for ej(N*—N). and have
approximated (IH=]/1HDj(N*—N) with j(N*—N), in both cases on the assumption that

H* = H if the simulation is of reasonable accuracy. Comparison of Eq. (1.40) with
Eq. (1.41) shows that

— 1 4 j(N*=N) , H* = H (1.41)

- [H* ~ IH*
[ﬂ- - 1] =8, = ‘——-‘ -1 = fractional error in gain (1.42)
H "
real
H» ~
[}—_’-—1] =e, = (N*—N) = phase error (1.43)

imag

We conclude that the real part, e, . of the fractional error in transfer function cor—
responds approximately to the fractional error in digital transfer function gain, and
the imaginary part, e, . corresponds approximately to the phase error of the digital
transfer function.

Another error measure for the digital transfer function is e, the fractional
error in the transfer function magnitude. Thus
e Re=rl_ fez e

H |H| M

It can be shown that the fractional peak error in sinusoidal output of the digital sys—
tem is equal to e . By fractional peak error we mean the peak error each cycle di—
vided by the peak output amplitude.

Errors in characteristic roots, as reflected by Egs. (1.37), (1.38) or (1.39).
will determine how well the transients generated in the digital simulation will match
the exact solution for the continuous system. As noted earlier, the fractional error
in transfer function gain and the transfer function phase error, as reflected by Egs.
(1.42) and (1.43), can be directly related to the errors in gain and phase margin pro—
duced by the digital computer in a hardware—in—the—loop simulation. In particular.
any hardware—in—the—loop simulation will have a crossover frequency, i.e., the fre—
quency W g at which the open loop system has unity gain. We recall that the phase
margin is the amount by which the open—Ilaop phase shift exceeds —180 degrees at
the crossover frequency W . The phase margin must be positive for the closed—loop
system to be stable, and the size of the phase margin is a direct measure of the rel—
ative stability of the closed—loop system. For the hardware—in—the—loop simulation

,'f (1.44)

1-16

to exhibit relative stability which closely matches that of the system being simulated,
the phase error in the digital—system transfer function at the frequency W g Must

be sufficiently small. Since W g is defined as the frequency for unity open—loop gain,
any gain error in the digital—system transfer function will affect the crossover fre—
quency itself. Thus for the hardware—in—the—loop simulation to exhibit a crossover
frequency which closely matches that of the system being simulated, the gain error

in the digital—system transfer function at the frequency W g Must also be sufficient—
ly small. Since the dominant frequency in the closed loop transient will be approxi—

mately equal to W . low gain error at that frequency in the digital simulation will

insure an accurate representation of the closed—Ioop transient frequency. just as low

phase error at W insures an accurate representation of the damping for closed—loop

transients.

For the above reasons we conclude that transfer function errors in real—time
digital simulation are generally more important than characteristic root errors, al—

though in Chapter 3 we will develope formulas for both types of error measures using
the method of z transforms.

1-17

CHAPTER 2

Z TRANSFORMS APPLIED TO DIGITAL SIMULATION

2.1 Introduction

The method of z transforms was originally developed for analysis of sampled—
data control systems, i.e., dynamic systems utilizing a mixture of continuous and
discrete time signals. This is just the case. for example. when a digital computer is
used to contral a continuous process. The z—transform methad is equally useful in
analyzing the performance of all—digital systems, and in particular in the determin—
ation of dynamic errors in digital simulation of dynamic systems. The dynamic errors
will depend on the type of numerical integration algorithm and the integration step
size. The method of z transforms permits us to examine these errors analytically and
hence choose acceptable integration algorithms and step sizes. The method is re—
stricted to linear systems with a fixed step size or sample period. ~We have already
noted in Chapter 1 that nonlinear systems can often be linearized using perturbation
equations. and that real—time digital simulation invariably requires the use of fixed
integration step sizes. Thus the z transfarm requirements can be met.

2.2 Definition of the Z Transform

We will assume that the digital signals involved in digital simulation are data
sequences, with the individual numbers in each data sequence considered to be equally
spaced in time, as noted above. Thus the digital signal or data sequence representing
a continuous time function f(t) will be denoted as the data sequence {fn }. where the
individual data—sequence number f, = f(nh). n =10, 1, 2. Here h is the time
interval between successive numbers in the data sequence. In a sampled—data system
h is the sample interval. In a digital simulation h is the integration step size.

The z transform of the data sequence {f_} is by definition

(2]
z{f,} = F@ = %fnz‘“ = fg + 1,27+ 1,272 4o 2.1)

where z is a complex variable. We note the similarity of the z—transform definition
to the Laplace transform F(s) of a continuous time time function f(t).* Thus

* Faor a discussion of both z and Laplace transforms, see Wilfred Kaplan, Operationa/
Methods for Linear Systerns Addison Wesley Publishing Company. Inc.. 1962.

2—1

Fs) = [i) e St et (2.2)
0

The integral of the continuous time function in the Laplace transform is replaced by
the summation of the discrete time series in the z transform.

For data sequences derived from exponential time functions the z transform
series can be written in closed form. Consider the exponential time function

Ht) = eIt (2.3)

and the equivalent data sequence
fa} = 17"} = (M} = {A") (2.4)

A=ecrh

where
(2.5)

From Eq. (2.1) we see that
= n
Frz) = 2 A"z = (1 —Aaz”) (2.6)
n=0

Expansion of (1 — A 21)'1 using the binomial theorem easily proves the validity of
Eg. (2.6). Thus we have shown that

z
z—-A

Z{A"t = (1 -Az)7 = (2.7)

It also follows that if the z transform of a data sequence contams a term z/(z—A).
the corresponding data sequence is the exponential sequence, {e anh }, i.e., equiva—
fent to equally spaced samples from a continuous time function eTt witha sample
interval h. From Egq. (2.5)

1

0 = —InA (2.8)

h
It is useful to consider the case of a complex exponential function
1 (& vt
() = eTtelWt - .0777 (2.9)
We recall that together with the conjugate function e (- jwit this can be used to

represent a sinusoidal time function with frequency W and exponentially varying am—
plitude eT U Here the equivalent data sequence is

2—2

»

{fo} = (eTheI¥MM} _ qany (2.10)
where A is now complex and given by

A = ¢ThgiWh 2.11)

But the complex number A can be written as

i =1
tan "(Aji/A
A= Ap+jag = jaelt BIAD (2.12)

= 2 2
Al = /Ar+Ai (2.13)

Equating the right sides of Eqgs. (2.11) and (2.12). we have

1 1 1014
- W = - _— 1
- In[A] . htan i (2.14)

where

Thus a 2 transform given by 2/(2—A) where A is complex corresponds to a data se—
quence equivalent to equally spaced samples from a sinusoidal time function of fre—
quency W and amplitude eT 1 with W and T related to A by the formulas in Egq.
(2.14). We note from both Eq. (2.8) for A positive real and Eq. (2.14) for A complex
that for |A| < 1 the data sequence decreases exponentially, and for JA| > 1 the data
sequence increases exponentially with time. For A = 1 the data sequence is always
unity. i.e., f,=1for all n. For A = —1 the data sequence alternates, i.e., fo=+1.
f=-1 f2 = +1, f3= —1, etc., which represents sampies from a unit amplitude
sinusoid with frequency equal to one—half the sample frequency, as predicted by Eq.
(2.14). Thus W = /K for A = —1 and hence the sinusoidal period = 2T/ W = 2h.

2.3 Simple Example of a Linear Digital System

We have seen in the previous section how the z transform can be used to repre—
sent a data sequence. In this section we will see how the z transform can be used to
represent a digital system. As a simple example, consider the continuous first—order

system shown in Figure 2.1. Assume that we wish to simulate this system digitally
using Euler integration.

X = Ax + f(t) (2.15)
In Chapter 1 we have seen that the numerical solution of Eq. (2.15) with Euler inte—

gration leads to the following difference equation:

2-3

Input 1 Output Input 1 Output

—» X\ —» ——® X —>
f(t) P- x(t) F(s) ST X(s) = H(s) F(s)
1
H(s) = Y
a) Time—domain representation b) s—domain representation

Figure 2.1. First—order continuous system

Xpey = Xn + h(Axp+1g) (2.16)

This is the difference equation that is mechanized by the digital simulation, starting
att =0 (i.e.. n = 0) with xg as the initial condition. The equation is now iterated
for n = 1,2, 3, .., to produce the outputs x1,X2.X3. ..., inresponse to the in—
puts fg. f 9. f2. f3..... Thus the digital computer produces an output data sequence
{xne1} given from Eq. (2.16) by

{xpu} = (0 + A0 {xn} + h{fn} (2.17)

where {fnl is the input data sequence.
We now take the z transform of the data sequences appearing on both sides of
Eq. (2.17). Consider first the z transform of {xn,q}. From Eq. (2.1) this is given by

Z{xp}l = x4 + xzz'1 + x3z'2 +

2

z(xg+ x12 7 + x92 7%+) — 2zxg

or
Z{xpl = 2X*2) — zxg (2.18)

Note the similarity of Eg. (2.18) to the formula for the Laplace transformof the
derivative of a function. Thus

L{df/dt} = sF(s) — fO (2.19)
Using Eq. (2.18), we can now take the z transform of Eq. (2.17) and obtain
zX*z) — zxg = (1 + AN X*2) + hF=() (2.20)

Solving for X*(z), we have

ZXg h .
z—1—kh+z—1—XhF(z) 2.21)

Xu(z) =

2—4

e ~

The first term an the right side of Eq. (2.21) depends only on the initial condition x,
and is equivalent to the transient (complementary) solution in the case of a continu—
ous system. It has exactly the form of Eq. (2.7) and therefore represents in the time
domain an exponential data sequence xo{(eUh)"} = xg{A"}, where A= 1+Ah.
From Eg. (2.8) we see that

T = -‘Em(w,\h)_ C(2.22)

We note that In{1+x%x) = x — x2/2 + x3/3 — x4/4 + - . Expanding the In function
in Eq. (2.22), we have

1— l 2 2 ame
o h(xh-zx hé +)
or

* 1 2

PR A —ZA%h . MKl (2.23)

For the continuous linear system the transient solution is given by xg e>‘ t, so
that a “perfect” digital solution would be a data sequence xg{(e A hyn} ., compared
with our actual solution, xg{(eT hYN} Just as A is the characteristic root of the
continuous system, so is O the equivalent characteristic raot of the digital system.
From now on we will designate the characleristic root of the digital system by b
where A" = @ in our example here. Replacing @ with A" in Eq. (2.23), subtracting

A and dividing by X, we obtain the following formula for e,, the fractional error in
the characteristic root of our digital system.

A=A
A

e, = = —lz-xh . IAR << (2.24)
The above asymptotic formula is valid only for h << 1/]A]. but this will of necessity
be true if we are to have an accurate simulation. As expected for Euler integration,
the root error varies as the first power of the integration step size, h. Thus the root
error will decrease by a factor of two when we halve the step size.

We next consider the second term on the right side of Eq. (2.21), i.e., the term
invalving the input z transform, F=(z). The coefficient of F*(z) in this term is defined
as the z transform, H=(2), of the digital system. Thus

h

@ = 3%

(2.25)
and when xg = 0,

X*(z) = H=*(2) F*(2) (2.26)

Digital system

{nput h Output
] X L
Fe@) | 2= 1= Ah | Xx(z) = H(z) F*(2)

h Hn()—___h_—_—

Figure 2.2. Digital system represénting simulation of a first—order system using
Euler integration.

Thus the system z transform, H»(z), times the input z transform, Fx(2), yields the
output z transform, as shown in Figure 2.2. The analogy with the Laplace transform
representation of the continuous system, as shown in Figure 2.1a, is very evident.

The system z transform in Eq. (2.25) can be related to the corresponding data
sequence in the time domain by dividing the denominator into the numerator, as
shown below.

hz V+h(1+r0)z2+h(1+rh)2273 + -

z—1-Xh/h
h=—h{+Ah)z"1
h(1+Ah)z™?
h(i+Ah)z ' =h(1+Ahn)2z72
h(1+Ah)2272
h(1+Ah)2z22-n(1+Ah)3z73
h(1+Ah)3z73
Thus
H*@Z) = hz ' +hOQ+An)z24+h(0+An)2z23 4 . (2.27)

From the z—transform definition in Eq. (2.1) we see that the data sequence {w, } for

which H*(z) is the z transform is given by wg.wq. wo. where

wg=10, wi=h, wo= h(1+Ah), wa=h(+Xh)2, wnp= h(1 +Xh)ﬁ-1
(2.28)

l.e., when the z transform is expressed as a series in powers of 2-1, the coefficient

of 27" is wn . the data sequence value at time nh.

We next calculate the response of a digital system with z—transform H*(2) to
a unit data paint input defined by f4 = Li,=1= fo, = 0, n= 0. Then from the

2—-6

z—transform definition in Eq. (2.1), F*2) = 1 and from Eq. (2.26). X*(2) = H*(2).
Thus we see that the z transform of the unit data point response of a digital system
is the system z transform, H*(z). This provides an alternative method for determin—
ing the z transform of a digital system, namely, take the z transform of the system
response sequence to a unit data point input. Earlier, in Eq. (2.25) we obtained the z
transform of the system by dividing the response z transform, X*(z), by the input z
transform, F*(2). '

The unit data paint input for a digital system is analagous to a unit impulse in—
put 6 (t) for a continuous system. The response data sequence. {w,}. for the unit
data point input is analagous to the weighting function, W(t), for the continuous sys—
tem, which represents the response to the unit impulse input. Just as the z transform
of the unit data point response sequence, {wq}. is H*(z), the system 2 transform, so
is the Laplace transform of the unit impulse response, W(t), equal to H(s), the La—
place transform (transfer function) of the continuous system.

It is useful to write Eq. (2.26) with the z transforms expressed in series form.
Thus

X”(Z) = xo +x1z'1 +xzz‘2 + -
= (wg +wqz7 1V +wozZ 4 Xfy + f,270 4+ 5,272 4)
+(Wofp+Wqfpq + = tWo fqtwpfg)z™ + o (2.29)

Equating coefficients of like powers of z on both sides of Eq. (2.29). we obtain

n
XO = wOfO, x1 = w0f1+w1f0, .- o xn = Zwkfn_k (2.30)
k=0

Since f,_, =0 for k>0 (the input data point f, = 0 for n < 0), the upper limit in
in the summation in Eq. (2.30) can be changed from n to co. Thus the digital system
response data point x,, at time nh is given by

[e]
Xn = 2 Wi fnk (2.31)
k=0
where {wqn} is the system unit data point response sequence and {fn} is the input

data sequence. The similarity to the superposition integral for the response x(t) of a
continuous linear time—invarient system to an input (t) is striking. Thus

f(t) = me(T)f(t—T)dT (2.32)
0

where W(t) is the unit impulse function for the system.

Finally, we consider a sinusoidal data sequence input as represented by samples
from f(t) = A el W Thys we let fon=A eiWnh _ A (el Why" From Eq. (3.17)
the response x, is given by

Xp = i!::ka(ej“”‘)n-k = {iwk(ej“’h)'k]/\(ejmh)n - (2.39)
k=0 =0

Reference to Eq. (2.1) shows that

{Zwk(ej“’“)"‘] = Hx(elWh) (2.34)
k=0
Thus

x, = He(elWhy¢, (2.35)

where f, is a sinusoidal data sequence of frequency W. Eg. (2.35) shows that the
response data sequence is also a sinusoid with the same frequency W and a complex
amplitude that is simply H=(eJWNY times the input amplitude A. Thus H=(elWh)
(i.e., the system z transform with z replaced by el wh) is the digital system trans—
fer function for sinusoidal inputs. The magnitude and phase angle of the compiex
number H"(ej W h) represent the amplitude ratio and phase shift of the output data
sequence with respect to the input sinusoidal data sequence.

Again, the analagy to continuous linear time—invarient systems is striking, i.e..

x(t) = H(jw) f(t) for f(t) = AelWt (2.36)

where x(t) is the response, H{jWw)is the transfer function for sinusoidal inputs. and
f(t)= A eJWtis the sinusoidal input to the continuous system.

As a specific example of a digital transfer function for sinusoidal inputs, con—
sider the simulation of the first—order linear system in Figure 2.1 using Euler inte—
gration. The 2z transform of the resulting digital system is given by Eq. (2.25). From
Eq. (2.35) we see that the digital transfer function for sinusoidal inputs is obtained
by replacing z with eJ W in H=(z). Thus

He(eJWh) = — = 2.37
(e) elWh _ 1 _xp coswWh—1—Ah +jsinWh ()

The continuous—system transfer function for sinusoidal inputs is obtained from Fig—
ure 2.1b by replacing s in H(s) by jw. Thus
1

H(jw) = frrpes

(2.38)

2—-8

For a given frequency W and step size h we can now calculate the fractional error in
the sinusoidal transfer function of the digital system. From Egs. (2.37) and (2.38)
this is given by

H«(eJWh) h(jw—\)

H(jw) '= cosWh—1—Ah+jsinwh - (2.39)

In Chapter 1, Eq. (1.41). we showed that the real and imaginary parts of H*/H — 1
represent, approximately, the fractional gain error and the phase error of the digital
system transfer function. This in turn gives us a very meaningful measure of the dy—
namic accuracy of the digital simulation. In Chapter 3 we will show how simplified
asymptotic formulas can be derived for these gain and phase errors, and in particular

that the errors vary as the first power of the integration step size h in the case of
Euler integration.

2.4 Stability of Digital Systems

We obtained the z transform of the digital system representing simulation by
Euler integration of the first order system in Figure 2.1 by taking the z transform of
the difference equation (2.16) and solving for H*(z) = X*(z)/F*(z). The same proce—
dure can be used to obtain the z transform of any linear digital system described by
one or more ditfference equations. leading to H*(z) of the following farm:

N*(z) _ N«(z)
D*(2) @-A1)z—A) - (z—A,)

H*(@2) = (2.40)

Here N*(z) and D*(2) are polynomials in 2. Aq.Az., ... A, are the roots of D*(z),
i.e., the poles of H*(z), and in general can be real or complex. H*(z) in Eq. (2.40)
can be represented in terms of a partial fraction expansion, just as H(s) for-the con—
tinuous linear system was represented in terms of a partial fraction expansion in Eq.
(1.35). Thus we can write

Hn() = C1 + CZ— + - + C"
7T @A) T Ay @=A,)

(2.41)

We conclude that the z transform for a linear digital system of any order can be ex—
pressed as the sum of z transforms of the form z/(z—A). We have aiready seen that
such z transforms correspond to exponential data sequences {A"} , where for |A| > 1
the sequence diverges exponentially, and for JA] < 1 the sequences converges expo—
nentially. In this case the exponential data sequences are terms in the unit data point

2—9

response sequence. Thus the averall unit data point response sequence is just the sum
of the exponential data sequences corresponding to each term on the right side of Eq.
(2.41). It is clear that if any of these exponential data sequences diverge, the unit
data point response will diverge and the digital system is unstable. For all the expo—
nential terms in the unit data point response to converge, the pole A associated with
each term must have a magnitude less that unity, i.e.. |Al < 1. We thus form the
conclusion that a digital system with z transform poles given by Ay will be stable if
[Agl <1 for all k. In the complex z plane, Akl <1 corresponds to the region in—
side the unit circle defined by |z] = 1. as shown in Figure 2.3. Z transform poles
within this region all correspond to exponentially converging data sequences. Pales
outside the unit circle in the z plane correspond to exponentially diverging data se—
quences. Poles on the unit circle correspond to data sequences of constant amplitude,
except that repeated poles on the unit circle represent diverging data sequences.

Figure 2.3. Geometric relationship between z transform poles and the stability and
frequency of the corresponding data sequences.

Also shown in Figure 2.3 are the frequencies of the data sequences correspond—
ing to the z transform poles, based on Eq. (2.14). Note that poles along the positive
real axis correspond to zero frequency. i.e., a pure exponential data sequence. Poles
along the negative real axis correspond to data sequences with a frequency equal to

2—10

L,

one—half the sample frequency. Along the 45 degree line the frequency equals one—
eighth the sample frequency: along the positive imaginary axis, one—fourth the sam—
ple frequency: etc. Note that for every z transform pole in the upper—half of the z
plane there must be a complex conjugate pole in the lower—half plane. These lower—
ha!f plane plane poles correspond to negative frequenctes which are present because
of the Euler representation of sinusoids as eJ

It is useful to compare regions in the z plane of Figure 2.3 with the corres—
ponding regions of the s plane in the Laplace transform. Thus we see that the unit
circle in the z plane corresponds to the imaginary axis in the s plane. Z transform
poles must be inside the unit circle in the z plane for the digital system to be stable;
Laplace transform poles must lie to the left of the imaginary axis for the continuous
systemn to be stable. Pole locations corresponding to a constant frequency lie along
straight line rays passing through the origin in the z plane, with the polar angle given
by TW/W g pole locations corresponding to a constant frequency lie along horizontal
lines in the s plane, with the frequency W given by the intercept on the imaginary
axis. Poles representing oscillatory time functions always occur in complex conjugate
pairs in the Laplace transform for continuous systems: this is also true for digital
systems for all frequencies except W = Wq/2, in which case a single pole along the
the negative real axis represents a sinuscidal data sequence with a frequency equal to
one half the sample frequency.

We now examine the stability of the digital system in Figure 2.2, which rep—
resents simulation of a first—order linear system using Euler integration. For the
system being simulated to be stable, it is clear that the characteristic root A must
be negative. From the digital system z transform it is apparent that the single pole
is given by

As we vary the step size h from zero to infinity, the pole z ymoves from +1 to mi—
nus infinity, as shown in Figure 2.4. This plot in the z plane is analagous to the so—
called root locus plot in the s plane for continuous closed—loop systems as the gain
constant of the controller is varied from zero to infinity. In Figure 2.4 we see that
the pole locus crosses the unit circle in the z plane for h = —2/A. For h> —2/A
the pole 2z, lies to the left of the point 2z = —1, and the simulation will be unstable.
The corresponding data sequence will be an exponentially growing oscillation at one—
half the sample frequency. In fact, for h in the range —1/A < h <—2/X the pole z 4,
although within the unit circle, lies on the negative real axis. This means that the
corresponding stable data sequence is oscillatory at one—half the sample frequency.

even though the continuous system being simulated has a non—ascillatory expanential
transient. Figure 2.5 compares the data points from a series of digital solutions with

2—1

Z plane Z imag

Zreal

1 G NG
System simulated: H(s) = T N i

1 Ah =—1

= —1/\

T 14Ts

Figure 2.4. Root locus for the pole z 4 of the digital system when Euler integration
is used to simulate a first—order linear system and 0 < h { .

the exact solution of the continuous system for x(0) = 1 and f(t) = 0. For each case)
the step size h corresponds to one of the values shown on the root locus plot in Fig— (
ure 2.4. For h = 2T (i.e.. Ah = —.2) the digital solution is fairly close to the ex—
act exponential solution e—t/T, falling somewhat below it because the characteristic
root A * of the digital system has a slightly larger in magnitude than the ideal root A
Thus the digital solution decays somewhat more rapidly than the exact solution. For
h = .5T (i.e., A\h = —.5) the difference between the digital and exact solutions is
even more evident. For h = T the digital solution drops to 0 at the first integration
step and remains there for all subsequent steps. In this case the pole zy= 0 and Eq.
(2.22) shows that the equivalent characteristic root A" (= 0) is also equal to zero.
Thus the digital solution remains equal to a constant, namely zero.
For h = 1.5T and 1.8T. Figure 2.5 shows that the digital solutions are damped
oscillations at one—half the sample frequency. in each case the corresponding pole Z 4
in Figure 2.4 lies on the negative real axis, but inside the unit circle in the 2 plane.
For h = 2T (i.e.. A\h = —2) the pole in Figure 2.4 lies at 24y = —1. This results in
a digital solution which is an undamped oscillation at one—half the sample frequency.
Finally, for h = 2.1T Figure 2.5 shows that the digital solutionis a growing oscilla—
tion , again at one—half the sample frequency. The corresponding pole zq in Figure
2.4 lies on the negative real axis, but outside the unit circle in the z plane. This then
accounts for the observed instability of the digital solution.

2—12

1.5 a
=]
— Exact Sol.
°© h=.2T
A h=5T
e h=T
v h=1.5T
& h=18T
¢ h=2T
o h=21T
<
-10} * . .
a
_1.5 -
h = integration step size
Figure 2.5. Digital solutions using Euler integration for system with H(s) = TS

Until now we have only considered the simulation of a first—order linear sys—
tem using Euler integration, where stabilty of the resulting digital system has been
determined by considering the pole z , of the system z transform. A second—order
linear system, when simulated using Euler integration, will have a z transform with
two poles, z; and z,. These poles are related to the two characteristic roots, A 4 and
)\2, of the second—order system by Eq. (2.42) for the case of both real and complex
A. We recall that Aqand Ao will be a complex conjugate pair when the second—
order system is underdamped. For the digital simulation of the second—order system
to be stable, both the z transform poles must lie within the unit circle in the z plane.
From Eq. (2.42) the stability criterion becomes

(1 +Ah] <1 (2.43)

|1 +Ahl = 1 represents a unit circle centered at the origin in the 1 + A h plane, or
a unit circle centered at —1 in the A h plane. This circle is shown in Figure 2.6. It

2—13

A\ h ‘plane.

..... + +j1

/.- Stable Region -1\

+1

4 -j1

Figure 2.6. Stability region for Euler integration when simulating linear systems.

is the region within which A h must lie for all characteristic roots A when simulating
any order linear system with Euler integration using a step size h.

2.5 Some Additional Z—Transform Formulas

Consider next the z transform of the data sequence {f n-k }. which represents
a data sequence delayed by kh with respect to the data sequence {f n}. From the z—
transform definition in Eq. (2.1) it follows that

Z{tnk} = 27K F@) (249

Thus the z transform for a digital system representing a time delay of k samples is
simply z7k, Again, it is interesting to compare these formulas with those for con—
tinuous systems. The Laplace transform of f(t—-td) is given by

L[ft-ty] = e S'd F) (2.45)
where F(s) is the Laplace transform of f(t). 1t follows that the Laplace transform of
a continuous system representing a pure time delay, tg4. is e—stld. Table 2.1 pre—

sents the 2 transforms for a number of commonly encountered data sequences, in—
cluding those we have already derived in this chapter.

2—14

Table 2.1

z Transforms

Z{t } = F+@ = ifn z "

n=0
fn F=(z2)
‘ y4
z -1
2
n
z—-1)2
n2 z(z+1)
(z-1)3
an z
zZ -3
nah za
(z—a)?
2
(n+1)an41 Z<a
(z-2a)?
aN sin nb zasinb
22 — 22acos b + a2 -
aN cos nb 2(z —acos b)

z2 — z2acos b + a?

CHAPTER 3

TRANSFER FUNCTION AND CHARACTERISTIC ROOT ERRORS FOR
FIXED—STEP INTEGRATION ALGORITHMS

3.1 Introduction

Error analysis of numerical integration algorithms is traditionally based on the
residual terms in the Taylor series expansion representing the integral. Although such
error measures do establish the dependence of the errar on both the integration step
size and the magnitude of the appropriate higher derivative, they do not lend much
insight into the estimation of the solution errors when applying a given integration
algorithm to a specific problem. Indeed. comprehensive error analysis can only be
accomplished when the differential equations being integrated are linear, which is
seldom the case in most practical applications.

Fortunately, as we have pointed out in Chapter 1, the nonlinear equations can often
be linearized about some reference or equilibrium solution, at least for purposes of
approximate error analysis. If. in addition, the integration step size is taken to be
constant (this is invariably the case in real—time simulation of dynamic systems and
can be approximately true over a number of steps when a variable—step method is used),
then the z—transform theory introduced in Chapter 2 can be applied. This in turn allows
analytic formulas to be developed for the errors in quasi—linear system characteristic
roots and the gain and phase errors in quasi—linear system transfer functions. These
specific error measures have already been defined in Chapter 1. Egs. (1.37). (1.38),
(1.39), (1.42) and (1.43). They will depend on the integration step size as well as the
particular integration algorithm, and can be directly related in a meaningful manner to
the overall solution accuracy in simulating dynamic systems.

In this chapter the characteristic root and transfer—function gain and phase errors
are developed in convenient asymptotic form for a variety of integration algorithms.
For single—pass integration algorithms we will show that the characteristic root
errors and transfer function gain and phase errors can be easily written for any order
linear system based on knowledge of the gain and phase errors of the algorithm in
per forming simple isolated integration. The frequency—domain methodology developed
in this chapter not only allows guantitative comparison of the dynamic performance of
various integration algorithms, but it also points the way to algorithm improvements in
specific applications.

3.2 Error Measures for Euler Integration

We now illustrate the methodology for deriving the error measures defined in
Chapter 1 by considering the simplist of all integration methods, Euler or rectangular
integration. applied to the solution of the first—order linear system described by the

state equation

dx
il Ax + u(t) - (3.1)

This is the example we considered earlier in Chapter 2 to illustrate the z—transform
method. If we use Euler integration to solve Eq. (3.1) numericaily, the following dif—
equation is obtained:

Xpney = Xp + h(Axp +Up) (3.2)

where h is the integration step size and X, = x(nh), u, = u(nh). Taking the z trans—
farm of Eq. (3.2). we have

ZX* — zxg = X* + h(AX* + U¥) (3.3)

For Xy = 0 (zero initial condition) we obtain the following formula for the system z
transform:

X h

— o H“ Z2) =

U= @ z— (1+Ah)
As noted in Eq. (2.22). the pole, Z;=1+ Ah. of H* is related to the equivalent con—
tinuous characteristic root, A", by the formula

(3.4)

z, = e*h = 14)n (3.5)
from which]
A" = Fln(1+/\h) . (3.6)

An asymptotic formula for A™ when IAh1<<1 can be derived by letting z = edh =
1+X2*h +(A*h)2/2 + -+ -+ in the denominator of Eq. (3.4). Setting the denomi—
nator equal to zero and retaining terms up to order h2, we obtain

®, 12 2
A*h — Ah ;_0‘2") g-(léﬁl IANRIKKT

This gives us the following formula for the fractional error in characteristic root:

»

A=A
A

e

- %’l IR << 1 (3.7)

-

e, =

3-2

This is just the result we obtained earlier in Eqg. (2.24) by expanding the log function
of Eq. (3.6) in a power series. Here we have obtained the asymptotic formula for e,
directly from the denominator of the system z transform. This is the method we will
also use later in this chapter in the case of higher—order integration methods, where
it is not possible to derive analytic formulas for the pales of the system z transform.

Next we derive the asymptotic formula for the fractional error in the transfer
function for sinusoidal inputs. From Eg. (2.37) we have

He(edWhy = — @ (3.8)

for the digital—system transfer function. From Eg. (2.38) the continuous—system
transfer function is
1

(3.9)

From Egs. (3.8) and (3.9) we can write the exact formula for H*/H -1, the fractional
error in digital transfer function. In trigonometric form the formula is given in Eq.
(2.39). To obtain a simple asymptotic expression when Wh<<1, we expand the ex—
ponential function in the denominator of Eq. (3.8) in a power series, retaining terms
of order h2 In this way we obtain
N 1 1 wh/
"= e TRErEl =
jw—A— W<h/2 W “h/ Jw-= Jw™—
a (jw-)‘)[1-’w—i]

e

L wWh<< 1 (3.10)

Noting that 1/ (jw—A)= H from Eq. (3.9), we obtain the following formula for the
fractional error in digital transfer function:

“ ~ W2h2 -—jw-—A , 2
L"__-l = . J = —%(wh)_J_—Zw—Z
H jWw=Xx —jw-A 2(W4+ %) 20we+\%)

(Wh)

Comparison with Egs. (1.42) and (1.43) leads directly to the following asymptotic
formulas for the transfer function gain and phase errors.

|H ~ WA
e, = -1 = =———(Wwh) ,Wh<< 1 (3.11)
H [H| 2(w?+ A%)

He—gH = w? (Wh) . Wh<< 1 (3.12)
e, = &H*"dH = = —47— - (Wh LW .
A 2(w2+\2)

3-3

As expected, the transfer function gain and phase errars using Euler integration vary
as the first power of the integration step size h.

Reference to Eq. (3.1) shows that when the characteristic root A = 0. the lin—
ear first—order system represents a pure integrator. The corresponding Euler inte—
grator transfer function, H ’f can be written directly in asymptotic form by setting
A = 0 in Eq. (3.10). In this way we obtain

1

3 , Wh< 1 (3.13)
jw (1 +—2-jmh)

Hy(edWM) =

From Eq. (3.13) it is evident that Euler integration behaves approximately as an ideal
integrator (transfer function = 1/] w) with an additional phase lag of Wh/2, which
corresponds to a time delay of h/2. A

We next consider the case where the characteristic root (eigenvalue) is com—
In terms of the undamped natural frequency W and the damping ratio § the root can
be written as

A= —Tw, 4+ jw, [1-¢2 (3.14)

This root will of course be accompanied by a complex conjugate root, so that the root
pair represents a second—order linear subsystem with real coefficients. Eq. (3.7) for
is valid for complex roots as well as real roots. Substituting Ea. (3.14) for X into Eaq.
(3.7). we obtain the following formula for A

A= wple, - 8) + jwJ1-t2(ey+ 1) (3.15)

where for Euler integration
e, 2 (T-tPwah, ey I Twgh | wiah K (3.16)

The imaginary part of A in Eq. (3.16) is simply w; . the frequency of the equivalent
digital root. Since W4 = W, / 1-12, where W4 is the frequency of the contin—
uous—system root. it follows that e, in Eq. (3.15) is just the fractional error in the
frequency of the digital root, as defined earlier in Eg. (2.6). For the specific case of
Euler integration e is given by Eq. (3.16).

To compute the equivalent damping ratio ¢ of the digital root we must first
determine W r: , the equivalent undamped natural frequency. Noting that I\" |2= W ;2,
we can derive the following asymptotic formula for w,’; from Eq. (3.15).

L]

WYz w [1-e 8 +(1-5%)e,]. lep 11, Je,| <« (3.17)

3—4

Equating the real part of A" in Eq. (3.15) to -C"W and using Eq. (3.17) for W
we obtain the following asymptotic formula for the damping ratio error.e .

e =0 -0 2 —(1-t%)(e +Te,) ., Je <1, Je |1 (3.18)

With the specific values of e. and e, givenin Eq. (3.16) for Euler mtegratlon the
asymptotic formula for the damplng ratlo errar becomes

ec=C"-C = '5(52—1)w,,h , W h<< (3.19)

From Egs. (3.16) and (3.13) we see that errors in both the frequency and damping
ratio vary as the first power of the integration step size h in the case of Euler inte—
gration.

For other integration algorithms the equation for A" will have the same as—
ymptotic form as that shown in Eq. (3.15) for Euler integration. Thus Eq. (3.18) can
in general be used to determine the damping—ratio error e, by substituting the
formulas for e, and e, . as derived for each specific integration method.

We next consider the transfer function errors when using Euler integration to
simulate the second—order linear system given by

d2x dx

7 2 ng +wix = ut) (3.20)

The transfer function of the continuous system for sinusoidal inputs is given by

1

2

H(jW) = —
wZ-wl+j2tw,w

(3.21)

We could, of course, use the same procedure we employed earlier in analyzing the
transfer function errors in the case of Euler integration of the first—order linear
system, namely, write the difference equations, take the z—transform, and deter—
mine the digital transfer function from which the asymptotic formulas for the gain
and phase errors can be derived. The error formulas can be determined more easily,
however, by using the asymptotic formula of Eq. (3.13) for the integrator transfer
function when Fuler integration is used. Thus we can obtain the approximate digital
transfer function for Euler integration of the second—order linear systemn by replac—
ing jW with jW (1 +jWwh/2) in Eq. (3.21). In this way we obtain

1
Wa— w21 +jwh) +j20W W (1 +jwh/2)

e

H*" . Wh<< 1 (3.22)

3-5

From Eq. (3.22) the fallowing asymptotic formula for the fractional error in transfer
fer function follows directly:

Cw, W+jw?
2

e

Wh , Wh<K (3.23)

HY
H 2 _
wn

wé+ j20W W

After rationalization to obtain the real and imaginary parts of H*/H—1, the follow—
ing formulas are obtained for the transfer—function gain and phase errors for Euler
integration applied to a second—order linear system.

2 2 2
cw 1+EJ_ 2.?2. 1_2(2_2_
W, m% L Wy mg
EH = 212 th' EA = 212 th‘ w h<<1
[1__w2J +{2§—m] {1___002] +[2!—w }
W W, w4 W, (3.24)

Again we note that the transfer function gain and phase errors for Euler integration,
applied here to the second—order system. are proportional to the first power of the
step size h.

3.3 Error Measures for All Single—Pass Integration Algorithms

In the previous section we developed characteristic—root and sinusoidal trans—
fer—function error formulas for Euler integration of first and second—order linear
systems. We used procedures in developing these formulas which can be generalized
to any single—pass integration method. By a single—pass method we mean an inte—
gration algorithm which requires only one evaluation of each state—variable deriva—
per averall integration step. Thus any of the Adams—Bashforth predictor algorithms
represents a single—pass method, as does trapezoidal integration when used explicitly
(Tustin's method). The Runge—Kutta algorithms represent multiple—pass methods.
Although the Adams—Moulton predictor—corrector methods require two passes per
integration step, it turns out that the asymptotic error formulas are identical to the
equivalent single—pass implicit algorithms based on the corrector formulas.

With single—pass algorithms all of the asymptotic formulas for the charac—
teristic root and transfer function errors can be written directly, once the asymp—
totic formulas for each individual integrator sinusoidal transfer function are known.
Eqg. (3.13) represents this formula in the case of Euler integration. As a next exam-—
ple we consider second—order Adams—Bashforth (AB—2) integration. From Eq. (1.8)
the difference equation for simple integration, dx/dt = f(t), is given by

3—-6

h
Xt = X+ (30— f,) (3.25)

Based on f, and f,_; this algorithm assumes a linear extrapolation of u(t) from t =

nh to t = (n+1)h. The area under this extrapolation is added to X, to compute x
Taking the z transform of Eq. (4.1) and assuming xg = 0. we have

N+l

h i .
zXr = X=+ 5 (3= z7T)F~ (3.26)
from which the following formula is obtained for the AB—2 integrator z transform.

D3 -
2(32)

Hi@) = (3.27)

2-1
The integrator transfer function for sinusoidal input data sequences is given by
La-eTiwhy

H(elWN) - 2__ (3.28)
elWh _4

If we represent the exponential terms in Eq. (3.28) by power series and retain terms
to order h3 then the following asymptotic formula is obtained for the AB—2 inte—
grator.

1

3 5 - WheCT (3.29)
jw (1 ‘Tz(“’h)

Hi(elWh) =

Comparison of Eq. (3.29) with the ideal integrator transfer function of 1/ jWw shows
that the AB—2 integrator behaves approximately like an ideal integrator except for a
fractional gain error equal to (5/12)(Wh)2 To arder h 2 the AB—2 integrator phase
error is zero.)

For any kth—order numerical integration algorithm the asymptotic formula for
the integrator transfer function will take the form

» i ~ 1
H(elWhN) = . Wh T (3.30)

jull+e (jwh)k]

Comparison of Eq. (3.30) with Eq. (3.13) shaws that for Euler integration. k = 1 and
e ;= 1/2. Comparison of Eq. (3.30) with Eq. (3.29) shows that for AB—2, k = 2 and
ey =95/12. Table 3.1 at the end of this chapter presents summary formulas for the
integrator transfer function error coefficient e for predictor, predictor—corrector,
power series, and implicit integration algorithms up to order k=A4.

3-7

For any single—pass integration algorithm it is easily seem that the z trans—
form of the digital system which result when the algorithm is used to solve a linear
system with transfer function H(s) is given by

He@z) = H[1/H ()] (3.31)

l.e.. the argument s in H(s) is simply replaced by 1/H ;(z), since H; (z) is the digital
equivalent to 1/s. In the same way, for any single—pass integration algorithm the
transfer function for sinusoidal input data sequences in solving a system with transfer
function H(jW) is given by

H(eIWP) = HiIHI(eIWN)] (3.32)

In particular, let H(s) = 1/(s-X) and H(jw) = 1/jw-XA). Using Eg. (3.30) to
represent H 'I' the integrator transfer function, we obtain the following approximate
formula for the digital transfer function for sinusoidal inputs.

1

H*(elWhy = L Wh<< 1 3.33
() jw—X+jwe (jwh)k (3.33)

Replacing jW in Eq. (3.33) with A" and solving for 1/H*, we obtain
—_—
H™(eA™h)

Setting the right side of Eq. (3.34) equal to zero and solving for A" determines the

value of A" which makes the denominator of H (e)‘) vanish, i.e., the equivalent
characteristic root of the digital system. Thus

e

AN =N+ Me (Ah)k | AThl << * (3.34)

M- = = Me (ATn)k = —de (An)k | N nl<< (3.35)

and
e, = ";" = —e (ARK |, IARIKCT (3.36)

Eq. (3.36) represents an asymptotic formula for the fractional error in characteris—
tic root for any single—pass algorithm, where e is the integrator transfer —function
error coefficient for the specific algorithm. We have already seen for Euler integra—
tion that k=1 and e 1= 1/2. In this case Eq. (3.36) yields e, = — Ah/2, which is
precisely the result we derived earlier in Eq. (3.7). For AB—2 integration we found
that k=2 and e ; = 5/12. From Eaq. (3.36) we obtain —(5/12)(Ah)2 as the asymp—
totic formula for e,, the fractional error in characteristic root.

3-8

It should be noted that Egs. (3.35) and (3.36) are not generally valid for mul—
tiple—pass integration algorithms, since the overall z transform for the solution of a
linear system cannot be obtained by substituting the reciprocal of the integrator z
transform for s in H(s) to obtain H=»(z). This is because during successive passes the
integration formulas are based on intermediate evaluations of states and state deriv—
atives, evaluations which depend on the particular state equations being solved.

From Eg. (3.33) it is easy to obtain the asymptotic formula for the fractional
error in sinuscidal transfer function. If we factor jW-X from the denominator and
note that 1/(jw—A) = H(jw). we obtain the following formula:

H* o jWeI(jWh)k

H W= A

(3.37)

To obtain the separate real and imaginary parts of H*/H—1 we must rationalize the
right side of Eq. (3.37). The result will depend on whether the order k of the inte—
gration algorithm is odd or even. -or odd k we obtain the following formulas forey.
the fractional error in transfer—function gain (i.e., the real part of H*/H—1), and
ep - the transfer function phase error (i.e., the imaginary part of H*/H—1).

kil whe, k41 wZeI
ey = (1) 2 —=—(wh)k, e, = (-1)2 ——(wWh)k ,wh<<1
" w2 +A2 A w2 +A?2
(3.38)
On the other hand, for k even we obtain
k wzeI k whe;
ey = — (12— (Wh)k, ey = (=12 —3——2-(wn)k . Wh<<
We+A We+A (3.39)

For k=1 and ey= 1/2 it is seen that ey and e, . as given by Eq. (3.38), agree with
the asymptotic formulas derived earlier for Euler integration in Egs (3.11) and (3.12).

Thus far in this section we have developed general formulas for the character—
istic root and transfer function errors when using single—pass integration methods to
simulate first—order linear systems. We now derive general formulas for these same
errar measures when simulating second—order linear systems with complex roots. Ta
determine the characteristic root errors we can work directly with the formula al—
ready developed in Eq. (3.35) by letting the root A be complex in accordance with Eq.
(3.14). For a given order k in the integration algorithm Eq. (3.35) can be rewritten
in the form of Eq. (3.15), including formulas for the errors e, and e, . Finally, Eg.
(3.18) is used to determine the formula for the damping—ratio error e¢. In terms of
the integrator error coefficient e . the asymptotic formulas for e, and e.. the
trequency and damping—ratio errors. respectively. are summarized for k = 1, 2. 3.

3-9

and 4 in the following equations:

First-—order algorithm (k=1), W h<<1
W g

= T"-C 2 (82-1)e;Wph (3.40)
d

ew=

’

Second—order algorithm (k=2), W h << 1
e, = (1-482)e (W M2 e 2 2(1-tHe (w,h)? (3.41)
Third—order algorithm (k=3), W h<<1

e, = 4(203-0)e (womP e, = 1-12)(1-4tDe (w,h)° (3.42)

Fourth—order algorithm (k=4), W h << 1

0= = (112824168 %)e (W h)t, eg 2 —2(1 =33~ 28%)e (W, n)*
(3.43)

We next consider the derivation of asymptotic formulas for the transfer func—
tion gain and phase errors when single—pass integration algorithms are used to solve
an underdamped second—order linear system with sinuscidal input. In Section 3.2 we
derived these formulas for Euler integration by substituting the asymptotic repre—
sentation of the Euler integrator into the second—order transfer function H(jw).
We use the same procedure here by empioying Egs. (3.30) and (3.32), where H(j w)
is given by Eq. (3.21). Thus
H"(eWhy = ! , Wh<< 1

wZ-w?[1+2e;(jwh)k]+j2tw wll+e (jwh)k]

If we factor wﬁ— wls j2CW W from the denominator and set the factor equal to
1/H in accordance with Eq. (3.21). we obtain the following formula for the fractional
error in transfer function.

,Wh<< 1 (3.44)

To abtain the separate real and imaginary parts of H*/H — 1 we must rationalize the
right side of Eq. (4.20). The result will depend on whether the arder k of the inte—
gration algorithm is odd or even. For odd k we obtain the following formulas for the
transfer function gain and phase errors, respectively:

2
2¢ W [1 +w—]91
W

k1 aow? K '
ey = (=1) (wh) ., wWh<< (3.45)
w212 w 12
1-=| +|28—
we W
2 2
225 1—2!;2—3:?-]&»I
k-1 wn wn K
ey = (—1)2 (Wh) | whi (3.46)
w212 w 12
1——2 + |28 —
wn wn
For even k the formulas are
2 2
w
2—2'[1—2§2—w—2]eI _
kK wg we k
ey = (—1)2 (wh) , wh1 (3.47)
w212 w 12
1-—§ +]28—
n n
2
) e W [1-;-—:]’—2]&31
k k
e, = —(-1)2 S ——(Wh) . Wh (3.48)
-5
wn wn

Thus far in this section we have derived formulas for transfer—function gain
and phase errors for single—pass integration algorithms in the simulation of first and
second—order linear subsystems. It turns out that the transfer—function gain and
phase errors in simulating any order of linear system are equal approximately to the
sum of the gain and phase errors, respectively, for the individual subsystems. In par—
ticular, let the overall transfer function of the continuous system be given by

A(s =M X5 Apaa) = (5 = Apem)
(s =2)s=Xg)----(s=X,)

H(s) = (3.49)

Here Ay Ay, ..., A, represent the n characteristic roots of the linear system and
Apste Apeae - ... Apsm represent the m zeros of H(s), where m < n. Using Eq (4.8)
we can write the following formulafor the digital transfer function for sinusoidal
inputs
eI Wy — AQMHI =M XIHT = Xpag) - - (IHT =X pam) as)
(/HI=AHT=X,) - - - (IHT =2)

where Hf is the digital integrator transfer function. Consider next the single factor
H; in Eq. (4.26) which results from the qth characteristic root, i.e., let

HY - — (3.51)

q . _
(IHT =X)

If we denote €Mq and eAq as the real and imaginary parts of the fract|ona| error in
digital transfer function, i.e., H /H g~ 1 as defined in Eg. (1.40), then H can be
represented as

Here Hgq = (W —A q)'1, the sinusoidal transfer function for the factor (s —A q)—1
in Eq. (3.49). Similarly, let H}, q be the reciprocal of the factor (1/HI A n+q) in
in the numerator of Eq. (3.50) and Hn+q be the reciprocal of the factor (j W = A uq)
of H(jw) in Eg. (3.439). Then we can write

Hn"’q = (1 + e n(n-o-q) + J eA(n"'Q)) H n+q (3.53)

where € H(n+q) and € A(n+q) € thf real and imaginary parts of the fractional error
in digital transfer function, i.e.. Hp,q/Hpq—1. In terms of the individual transfer
function factors defined above the overall digital transfer function of Eg. (3.50; can

be written as

H”H“.-..H“
H* = —1-2 n_ (3.54)
HoeHpez * " "Hpem

Substituting Egs. (3.52) and (3.53) for the individual transfer—function factors on the
the right side of Egq. (3.54) and neglecting terms above first order in the errors e,
and e pe We obtain the following expression for the fractional error in digital transfer
function.

H“(ejwh) . n+m
HGw) D) (eng+jenq) = 2 (enq+jeaq) (3.55)
g=1 g=n+1

3-12

Comparison with Egs. (1.42) and (1.43) vyields the following formulas for the frac—
tional gain error and the phase error, respectively, of the overall transfer function.

'H“I n n+m
I RO 3 @59
q=1 q=n+1
n n+m .
eg = <H—<H I) ey —) ey (3.57)
g=1 g=n+1

Egs. (3.56) and (3.57) are completely general and quite useful. They state that the
transfer—function gain and phase errors in digital simulation of any order linear sys—
temn when using a single—pass integration algorithm are equal to the sum of the gain
and phase errors, respectively, in simulation of the individual zero and pole factors.
In terms of the individual integrator error coefficient. ey.we have developed simple
asymptotic formulas for ey, and epq in Egs. (3.38) and (3.39) for factors with real
zeros or poles, and in Egs. ?3.45) through (3.48) for factors with complex zeros or
poles.

3.4 Adams—Bashforth Predictor Algorithms

In the next several sections we consider a number of well known single—pass
integration methods. For each method we determine the integrator transfer—function
error coefficient, e ;. which, along with the order k of the method, allows us to use
the formulas developed in the previous section for errors in characteristic roots and
the transfer —function gain and phase errars in simulating any linear system.

First we consider Adams—Bashforth predictor methods up to 4th order. Euler
integration could be termed AB—1. since it is first order (k = 1) and is based on a
zero—arder extrapolation of the state—variable derivative over the integration step.
h. We have seen that e 1 = 1/2 tor Euler integration; this means that the character—
istic root errors will be proportional to Ah /2, as is evident in Egs. (3.7). (3.16) and
(3.19). It also means that the transfer function errors will be proportional to Wh/2,
which is evident in Egs. (3.11, (3.12), and (3.24).

AB—2 integration, represented in Eq. (3.25), is based on a first—order extrap—
olation from the current and past state—variable derivatives. We have seen that er
= 5/12 and k=2 for AB—2 integration. This means that characteristic root errors
will be proportional to (5/12) (Ah)2 and transfer—function gain and phase errors
will be proportional to (5/12) (Wh)Z2,

AB—3 integration, represented in Eq. (1.10), is based on a quadratic extrapo—
lation from the current and past two state—variable derivatives. For integration of

3—13

the equation dx/dt = u(t) this resuits in the following formula:

X0y = Xp + 1ﬁz(zaun_16um+5u,,_2) (3.58)
Taking the z transform and solving for X*/U*, we obtain the AB—3 integrator z

transform. Thus

12
HI@ = (3.59)
23 22

The AB—3 integrator transfer function is simply H’I'(ej WhY which takes the fol—
lowing asymptotic form when the exponential functions are replaced by power series
with terms retained up to order h4.

1

HI(eIWh) = Wh<< 1 (3.60)

Wit + g (Gwh)®]

Comparison of Eq. (3.60) with Eq. (3.30) shows that e[= 3/8 and k = 3 for AB—3
integration.

AB—4 integration, represented by Eq. (1.12), is based on a cubic extrapolation {
from the current and past three state—variable derivatives. Integration of the equa—
tion dx/dt = u(t) leads to the following formula:

Xpey = xn+£-4(55un—59un_,+37un_2—9un_3) (3.61)

Taking the z transform and solving for X*/U%, we obtain the AB—4 integrator z
transform. Thus

Ll (5523 - 5922437z — 9)

Hi@) = & (3.62)

From the z transform in Eq. (3.63) we can derive the transfer function of the AB—4
integrator, which has the asymptotic form

1

HieIWh) = . Wh<C T (3.63)

. 251,
jwlt + 22 (jwh)?]

Comparing Eq. (3.63) with Egq. (3.30), we see that e; = 251/720 and k = 4 for
AB—4 integration.

3—14

Befare considering additional single—pass integration methods, we will discuss
briefly the extraneous roots which result from the AB predictor methods. Assume we
use AB—2, for example, to solve the first order linear system of Eq. (3.1), which has
the transfer function H(s) = (s — A)71 According to Eq. (3.31) we can write the z
transform of the resulting digital system by simply replacing s in H(s) with 1/H7]. as
given for AB—2 in Eq. (3.27). Thus we obtain

h
> (3z—1)

H*(z) = (3.64)

22 — (1 +3—;‘D)z + %h
We note that H*(z) has two poles because the denominator is a quadratic in z. One of
these poles, z 1. corresponds to an equivalent characteristic root A “which will almost
equal the ideal root A when |Ah|<<{1. The second pole, z,. corresponds to a second
characteristic root which is extraneous. [t results from the additional state intro—
duced because u _;. the past state—variable derivative, is included in the AB—2 in—

tegration algorithm. For small step size ([Ah[<<1) it can be shown that z, = A h/2

and corresponds to a rapidly decaying transient.

In Chapter 2. Figure 2.3. we observed that whenever a pole of H*(2) lies out—
side the unit circle in the z plane, i.e., exceeds unity in magnitude, the corresponding
characteristic root A" will have a positive real part, leading to an unstable transient.
When a pole of H%(z2) lies on the unit circle, the system is neutrally stable. Thus all
the poles of H*(z) must lie inside the unit circle in the z plane for the digital system
to be stable. If Eq. (3.1) is to represent a stable continuous system, then) < 0 and
the dimensionless step size Ah is negative. For Ah = —1, it is apparent from the
denominator of Eq. (3.64) that z = —1 is a pole of H*(z). The corresponding A" from
Eq. (3.5) is equal to jT1/h, which represents an undamped oscillation with frequency
equal to one—half the integration frame rate 1/h. This corresponds to neutral stabil—
ity due to the extraneous root. For any larger integration step size (Ah< —1) the
extraneous root causes an unstable transient and the solution diverges, even though
the first pole z 4, corresponding to the principal raot, represents a stable solution.

For AB—2 simulation of a second—order subsystem there will be two extrane—
ous roots in addition to the two principal roots. The locus of dimensionless step sizes
A h for which a pole of H*(z) lies on the unit circle can be calculated by setting the
denominator of Eq. (3.64) equal to zero with |z] =1 and solving for A h. In particular,
we let z = eJ © and vary the polar angle 6 to generate the locus, obtaining the plot
shown for AB—2 in Figure 3.1. For all characteristic roots A and step sizes h such
that the product A h remains inside the AB—2 countour shown in the figure, the dig—
ital system will be stable. For A h values lying outside the contour the digital system

3—15

ju.o-

3.8+

564

SRS

-1.0 -.8 -6 -.4 -2 0 2
Figure 3.1. Stability boundaries for Adams—Bashforth integration.

is unstable. Far Ah values lying on the contour the digital system is neutrally sta—
ble. The frequency of oscillation is generally less than one—half the sample frequency.
The one exception, noted above, is when Ah = —1, in which case the digital system
exhibits neutral stability at exactly one—half the sample frequency.

Figure 3.1 also shows the stability boundaries for AB—3 and AB—4 integration.
To obtain the stability boundary in the case of AB—3 integration, we first write the
system z transform which results when AB—3 is used to solve a first—order system
with characteristic root A. Thus we replace s in the transfer function (s — A)~"
with H;. In this way we abtain

h 2 _
12(232 162 + 5)

H*(Z) = (3.65)

3_ 23 2,16 _3
z (1+12,\h)z +12)\hz 12)«h

Here H*(z) has three poles because the denominator is a cubic in z. One of the poles
corresponds to an equivalent characteristic root A which will almost equal the ideal
root A when |A h| <<1. The other two poles represent characteristic roots which are
extraneous. They result from the past two state—variable derivatives which are used
in the AB—3 algorithm. For small integration step sizes, i.e., |\ h|<<1, they cor—
respond to very rapidly decaying transients. If we consider the case for which z = —1
is a pole of the z transform in Eq. (3.65) and solve for A h, we find that Ah = —6/11.

3—16

Here z = —1 corresponds to an extraneous root and leads to an undamped transient
at one half the sample frequency. For any larger integration step size (A h<—1) the
system becomes unstable.

In general, AB—3 integration will introduce two extraneous roots per state
variable in the probiem being solved. Figure 3.1 shows the stability boundary in the
complex A h plane for AB—3 integration. The boundary is obtained by the same me—
thod used earlier for AB—2. Thus we set the denominator of Eq. (3.65) equal to zero
with z = eJ© and salve for Ah as the polar angle © is varied from 0 to TT.

To obtain the stability boundary for AB—4 integration, we write the system z
transfarm which results when AB—4 is used to simulate a first—arder system with a
characteristic root A . Thus we replace s in the transfer function (s —)~ by 1/H ; .
as given for the AB—4 integrator in Eq. (3.62). In this way we obtain

é% (5523 — 5922 4 37z — Q)

@) = 55 59 37 g (3.66)
4 _ mAS4 34 == 2 __ 2L 2
z (1+24)\h)2 +24>\hz 24)\h2+24 h

Here we see that H*(z) has four poles, three of which correspond to extraneous roots.
They result from the past three state—variable derivatives which are used in AB—4
integration. Again, for |A h|<<1 they correspond to very rapidly decaying transients
and do not cause significant errors. But they can cause instability as the integration
step gets larger. If we set the denominator of H*(z) in Egq. (3.66) equal to zero for
z = —1 and solve for Ah, we obtain A h =—3/10. Thus AB—4 integration becomes
unstable when the step size h is larger than —1/) (we recall that A must be negative
for the continuous system to be stable). For h =—1/) the digital system will be
neutrally stable with an undamped transient at one—half the sample frequency due to
the extraneous pole at z = —1. For this same step size, which is only 30 percent of
of the continuous system time constant, —1/ A, the principle root 2" of the AB—4
simulation is within one percent of the ideal root A !

Figure 3.2 illustrates the effect of the unstable extraneous root when the in—
tegrator step size is too large. Shawn in the figure is the response of a first—order
linear system to a unit step input as computed using AB—4 integration with an inte—
gration step size h = 0.36. Since the system being simulated here has a unit time
constant (i.e.. A = —1). Ah = —0.36. For h = 0.30 we have seen above that the
extraneous root will produce neutral stability in this case. For the larger step size in
Figure 3.2 the instability is very apparent. At the same time we note that the AB—4
solution is very close to the exact solution until such time as the small initial tran—
sient associated with the extraneous root grows to significant amplitude.

In general. AB—4 integration will introduce three extraneous roots per state

3—17

1.5 o AB—4 solution with h = .36
—— Exact solution .
a
]
=]
10'— n_.n_nnnﬂnnnou
. oo n0o0og g o
o o a
X a
g
0.5
0 | | I ! 1 1 1 1 3
0 2 4 o] 8 10 12 14 16 18

Figure 3.2. Unit step response of first—order system showing instability of AB—4
extraneous root. H(s) = 1/(s+1).

variable. For complex A the AB—4 stability boundary is shown in the A h plane in
Figure 3.1. The same method described earlier for AB—2 and AB—3 integration is
used to compute the boundary. For values of Ah along the left side of the stability
region for all three methods. the instability results from an extraneous root. In the
case of AB—3 integration, for values of X h along the right side of the stability re—
gion, the instability resuits from the principle root. Consider the case, for example,
where A h lies on the imaginary axis, which corresponds to a second—order continu—
ous system with zero damping. Such pure imaginary values of Ah lie inside the sta—
bility region for AB—3 integration, at least for |\ h| <~ 0.7. Thus AB—3 integration
introduces positive damping into the simulation of a zero—damped system. This con—
clusion is consistant with the damping—ratio error formula of Egq. (3.42) along with
the AB—3 integrator error coefficient, e ; = 3/8, as derived from Eq. (3.60).

From Figure 3.1 it is clear that the higher the order of the predictor integra—
tion algorithm, the more restrictive is the upper limit on integration step size based
on stability considerations. For real—time simulations, where dynamic accuracy re—
quirements are often moderate (0.1 to 1 percent), it is clear that AB—4 is unlikely
ta be a strong candidate algorithm due to instability cansiderations. This is especially
true when simulating stiff systems, such as those containing controller subsystems
with very small time constants. For adequate stability margin the AB—4 method
requires the order of 4 integration steps per shortest time constant in the system. It

is likely that such a small step size will provide much more accurate solutions than

3—-18

are required. Yet an attempt to speed up the solution with even a modest increase in
the step size will be likely to cause instability due to an extraneous root. In this case
a lower order predictor method, or even a two—pass predictor—corrector algorithm,
may prove to be a better compromise.*

From the above discussion it is clear that the higher order AB methods should
be used with some care. However, if the characteristic roots of the linearized system
are known and, in particular, the magnitude of the largest root is known, then the
maximum safe step size can be estimated based on the stability plots in Figure 3.1.

Another disadvantage of the AB predictor methods is the startup problem.
which results from the need in the initial integration step to specify the required
past values of the state—variable derivatives. These past values can be computed by
integrating backwards from the initial time the required number of steps, using an
integration method such as Runge—Kutta which has no startup problem. This was in
fact the way we produced the AB—4 solution in Figure 3.2. A simpler but less accu—
rate alternative is to use Euler integration for the first step, AB—2 for the second,
AB—3 for the third, etc., until the final order of AB algorithm is attained. Subse—
quent integration steps use that algorithm. In many real—time simulations the small
transient startup errors introduced by this scheme are unimportant. It is not an ap—
proriate startup methaod for the solution of two—point boundary—value problems,
however,

3.5 Implicit Integration Algorithms

In this section we consider the three specific implicit integration methods that
form the basis for the Adams—Moulton predictor—corrector algorithms of order two,
three and four. We have already introduced the formulas for these implicit methods
In Section 1.2 of Chapter 1. Here we will determine the integrator error coefficient,
ey as defined by Eg. (3.30), for each method. This will, in turn, let us apply the
formulas developed in Section 3.3 for the characteristic—root and transfer—function
errors. Note that these implicit methods can be used as explicit, single—pass algo—
rithms when applied to linear systems.

The first of the three implicit methods is trapezoidal integration, given earlier
in Eq. (1.6). When used to solve dx/dt = u, it takes the form

h
Xnet = Xn + E (Unq + Un) (367)

» See, for example, R.M. Howe. "Special Considerations in Real—Time Digita Simu—
lation," FProc. 71983 Surnmer Cornputer Simulation Conference P.O. Box 2228, La
Jolla, California 92038, pp 64—71.

Taking the z transfarm of Eq. (3.67) and solving for H , we obtain

. D z+1)
HIi@) = Z (3.68)
z—1

Replacing z with e 1 in Eq. (3.68). we obtain H}(eJWN), the trapezoidal inte—
grator transfer function for sinusoidal inputs. Thus '

. g(ejmh-ﬂ) g[
H;(erh) =

gcos(wh/Z)

ejwh/2+e—jwh/2]

2

(eiWh_y) j[eJ'Wh/Z_e—JWh/Z] i sin (Wh/2)
i2

or

Hiiwhy o /2 (3.69)
jtan (Wh/2)

Noting that tan x = x + x3/3 + ---, we can rewrite Eq. (3.69) as follows:

1

wWh<< 1 (3.70)

rd

HieIWh) =
jwlt - (jwh)?]

Comparison with Eq. (3.30) shows that the integrator error coefficient ey = —1/12
and k = 2. Earlier, based on Eq. (3.29), we determined that e = 5/12 for AB—2
integration. Thus it is clear that trapezoidal integration is five times more accurate
than AB—2 integration for small step sizes. From Section 3.3 we know that this ac—
curacy comparison extends as well to characteristic root errors and transfer function
gain and phase errars. The trapezoidal method has the further advantager that it does
not introduce any extraneous roots. However, it cannat be used as a single—pass
method in the solution of nonlinear differential equations because of the implicit na—
ture of the aigorithm.

In Eq. (1.9) we introduced the third—order implicit algorithm, which takes the
following form when used to solve the equation dx/dt = u:

h
Xme{ = Xp +1—§(5un,1+8un—un-1) (3.71)
Taking the z transform of Eq. (3.67) and solving for H], we obtain
sz t8-2-1)

sy _ 12 (3.72)
HI(Z) z—1

3-20

"\‘

Again, the integrator transfer function for sinusoidal inputs is H;(ej Why which has
the following asymptotic form when the exponential functions are expanded in power
series and terms to order h4 are retained:

1

HieJWh) = , Wh (3.73)

jWIt = 54 (jWh)]

Comparison of Eq. (3.73) with Eq. (3.30) shows that e ;= —1/24 and k = 3 for this
third—order implicit integration algorithm. On the other hand Eq. (3.60) shows that
e 1= 3/8 for the AB—3 predictor algorithm algorithm.Thus the third—order implicit
method is nine times more accurate than the third—order predictor method. But the
implicit method can only be used explicitly, i.e., without time—consuming iterations,
when the system being simulated is linear. Also, it introduces an extraneous root for
each state variable in the system being simulated. This is because the algorithm in
Eq. (3.71) depends on a past derivative. Despite the presence of the extraneous root,
however, instability only occurs for very large step sizes. For example, when this
third—order implicit algorithm is used to simulate a system which has a negative
real characteristic root M, it is easy to show that the simulation becomes unstable
only when A hl > 6. This is a very large step size indeed, and should not be a signif—
icant deterent in the selection of this third—order implicit integration method.

Finally. we consider the fourth—order implicit integration algorithm given in
Eq. (1.11). When used to solve the equation dx/dt = u, it takes the form

h

24(9un,1+19un-Sun_1+un_2) (3.79)

Xnet = Xp +
Taking the z transform and solving for Hf . we obtain

i%(gzﬂg — 52-142-2)

Hi(@) = (3.75)

z—-1
As noted previously, the integrator transfer function for sinusoidal inputs is given by
H ;(eJ Wh). When the exponential functions are expanded in power series and terms

to order h® are retained, the following asymptotic formula for the integrator trans—
function results:

1

19 um3
13 ()]

HielWh) = Wh<< 1 (3.76)

jwlt -

Comparison of Eq. (3.76) with Eq. (3.30) shows that e = —19/720 and k=4 for
this fourth—order implicit integration algorithm. For AB—4 integration we found in
Eq. (3.63) that e = 251/720. Thus the fourth—order implicit method of Eq. (3.74)
is 251718 or 13.2 times more accurate than the AB—4 predictor method. However,
it can only be used as an explicit algorithm in the simulation of linear systems. Also,
it introduces two extraneous roots for each state variable in the system being simu—
lated. This is because the algorithm in Eq. (3.74) utilizes two past derivatives. These
extraneous roots do not, however, cause significant stability problems for large inte—
gration step sizes. For example. when the system being simulated has a negative real
root A, the simulation only becomes unstable when IAhl > 3. This represents a step
size equal to three times the time constant associated with the negative real root.
Figure 3.3 shows the stability boundaries in the Ah plane for all three of the
implicit integration algorithms considered in this section. The figure shows that the
stability boundary for the second—order algorithm, which represents trapezoidal in—

¢ : persssssansszensisnasnes presssssenes SRR R Ay
: ! H i 2nd—order implicit < !
i rd—order implicit i
frsensnaneas fessesennees FoNgerenss s ¥ Fragzeees deseesencnns j3eusennsd
! Ah plane { i ~
E Nesssssepben tesssescveand &:....;.:.... Suesesscssasdrnannndpance L Jz :
Ath—order implicit

ssssssmowed

locevassrers
looorase

--

ssonssprrosss

.
.
.
Ll
.
.
Ll
.
[
0
*
[
.
.
[
.
s
.
.
.
.
.
.
.
.
[
.
[
.
.
.
*

[Py

—t

*
.
.
[
[
[
L]

b eosssvovovoporoosovovocons

sosvocossvep
Y Y PY Y Py
soervocsses
s ovsoravosse

|
~
|
g
|
en
|
S
I
w
|
N
|
b
o
+
ek

Figure 3.3. Stability boundaries for implicit integration methods.

tegration, is the imaginary axis. The stability region is therefore the entire left—half
plane. Thus trapezoidal integration, when used to simulate a stable linear system, will
always produce a stable solution regardless of the integration step size. For the third
and fourth—order implicit algorithms the step size h must be such that A h remains
within the region shown in the left—half plane for thedigital solution to be stable.

3-—-22

3.6 Power Series Integration Algorithms

When the derivatives of the state variables are functions which can be differ—
entiated analytically, then the following power series algorithm can be used for nu—
merical integration of the state equation, dx/dt = u:

h2 ., nd. |

Xpet = Xp + hup + Zrvn + Fun o+ (3.77)
where u' = du/dt, u" = dZy/dt 2, etc. The order of the integration method depends
on the number of terms utilized before the power series is truncated. Halin has been
particularly successful in exploiting the power series method as an efficient means of
numerical integration of nonlinear differential equations.* This type of integration
algorithm is often used with a variable step size. However, we will assume here that
the step size is fixed and that the nonlinear equations have been linearized so that we
can use the method of z transforms to analyze the dynamic errors. The results of
this analysis will give us insight into the dynamic performance of the power series
method compared with other integration algorithms.

Taking the z transform of Eq. (3.77) and assuming that xg = 0, we obtain

h2 h3

2X* = X¥ 4+ hUs + Zm U+ FrU™+ - - (3.78)

To derive the integrator transfer function for a sinusoidal input data sequence we re—

place z by e]Wh and note that u, = ejWNN uy = jwelWnh — iy, u'fy =

(j w)Zejwnh (w)zun, etc. Then it follows that Eq. (3.78) becomes
jwh) (jwh)?

Gwh) . (wh N

2! 3!

ejWNhxe = xw 4 h[1 + .- Jun

Solving for X*/U* = R f . the power series integrator transfer function. we obtain

- FWh 2 PRYRP
h[1+(’(;h)+(’u;:1) +--~+(’——w‘:)]
H‘I‘(elw") = i : i (3.79)
eJWh _q

where we have truncated the power series at the h*~1term. Expanding elWh ina
power series and retaining terms up to order hk, we obtain the following asymptotic

* H.J. Halin, “Integration across Discontinuities in Ordinary Differential Equations
Using Power Series.” Simulation Vol. 32. No. 2. February. 1979. pp 33—45.

3-23

formula for the power series integrator transfer function:

1
Gwhk -
(k+1)]

H'I'(ejwh) v wh << 1 (3.80)

jwl1 +

Comparison with Eq. (3.30) shows that the kth—order power series integration algo—
rithm has an integrator error coefficient e given by

_] (3.81)

RR Sy

Since the power series integration method is a single—pass algorithm, the value
of e, in Eq. (3.81) can be used directly in the asymptotic formulas of Section 3.3 for
characterlstlc root errors, and for transfer function gain and phase errors.

3.7 Runge—Kutta Integration Algorithms

Next we consider the Runge—Kutta multiple—pass algorithms which were in—
troduced in Section 1.2. We consider first a version of RK—2 known as Heun's meth—
od, which from Egs. (1.19) and (1.20) takes the following form when solving the state
equation given by (3.1).

h n A
X net =Xn+§(7~xn+Un+>\Xm1+Um1), where X n, = X +h(AX,+Up)
(3.82)

Here X pey is an estimate of X p,q based on Euler integration. Taking the z transform
of Eq. (3.82) and solving for X*(z), we obtain

zZx | :
X*(@2) = g 77+ @@ (3.83)
z—(1+Ah+ 52—)
Here H*(z), the system z transform, is given by
h (z+1+Xh)
H*(2) = 252 (3.84)
z= (1 +rh+—=)

As noted in Eq.(2.22), the pole, zy =1+ Ah + A2h2/2, of H*(2) is related to the
the equivalent cgaracteristic root, A", by the formula

3-24

« A2 '
A =lhln(1+}~h+ h) (3.85)

The asymptottc formula for A™ when |\h|<<1 is obtained by letting z = e Mhoo

1+2"h +(A*h)2/2 4+ - - - in the denominator of Eq. (3.84). Setting the denominator
equal to zero and retalmng terms up to order h3, we obtain

Mo X 3 (A= T R+ T (32 = 0 ~ (3.86)

Next we assume that |Ah]<<1 and |A"—= A|<<|A|. Then the middle term on the
left side of Eq. (3.86) is negligible and we have

1
A A ¥ —-EA%Z, Inh] << (3.87)

This equation is valid for both real and complex A . The fractional error in character—
istic root, e, , is given by

" A 1
e, = 2 ¥ — —A2Zh2, |ah|<<T (3.88)

A 6

As expected for RK~2 integration, the error varies as the square of the integration

step size h. From Egs. (3.29) and (3.36) we see that the comparable error for AB—2
integration is given by
AT— A ~ 5 2.2
= - A
X 127

e\ = INh] <<

Thus the AB—2 root error is 2.5 times that of RK—2. On the other hand, the RK—2
algorithm requires two passes through the state equations per integration step. This
means that BK—2 will generally take twice as long to execute each integration step
when compared with AB—2. This results in double the step size and hence four times
the root error. since we are dealing with a second—order method. The net effect is
to make the AB—2 errar equal to 2.5/4 or 5/8ths the roaot error obtained when using
RK—2 integration.

We next consider the transfer function for sinusoidal inputs, H (eJ W h) This
is obtained by substituting eJWh for z in Eq. (3.84). The asymptotlc formulas for
the transfer function gain and phase errors are obtained by representing eJWhyith a
power series and retaining terms to order h2in the numerator of Eq. (3.84), and h 3

in the denominator of Eq. (3.84). The resuiting formula for H ’I'(ej Why takes the
following form:

1+b+jec

H*elWh) (3.89)
1) jW—A+d+]je
where for RK—2 integration
A 14212 W 2z w? 1,,3,2
b=Lh_--W*h", =2h. d=—-(& 4+—)h, e=—=W"h 3.90
2" T4 TR (5 +5)h. e=—gwih® (30)
Next we factor (jW — \) out of the denominator of Eq. (3.89) and obtain
H;(ejwh) ~ 1+b+jc —
. . . J€
JW— A [1+b+ c—b—jc +-]
() j e +307
_ 1
. b+jc)(jWw—A)—d—je
(Jw-x)[1—(jc)(.) j]
(1+b+jc)jw—21r)
or
wo 1 (b+jec)ljw—Ar)—d—je
H*(elWh g,—-—[1 . 3.91
(e) ol WX (3.91)

Here we have assumed that |b|<< 1. |c|<<1. and |d +jel <<|jw —A|. Noting that
17(jw—)) is equal to H(jWw). we can write the following expression for the frac—
tional error of the digital transfer function:

H N (bHjejw—r)—d—je

— -1 - 3.92
H JW— A (3.92)
Using Eq. (3.90) for b, c. d and e, we obtain

Law2h2— L w3n?

He o 4 12 =W
H jw— A —jJw -2
or
" - L wZhZ(W24387) - jawh?
L. 6 . Wh<<1 (3.93)
H W24 A2

We have seen in Egs. (1.42) and (1.43) that the real and imaginary parts on the right

3-26

side of Eq. (3.93) are equal to the fractional gain error and the phase error, respec—
tively, of the digital transfer function for sinusoidal inputs. Thus we have

H“ wz)‘2
| |—1 = fractional error in gain = ey = - +3 (mh)2
IHI 12(W2 + 2%)

(3.94)
~ WA
A 6(w2 4+ A2)

<ZH* — «<H = phase error = e (mh)z.' whe¢< 1

As expected, the transfer function gain and phase errors, when using RK—2 integra—
tion to simulate a first—order system, vary as the second power of the integration
step size h.

The characteristic root errors which result when BK—2 integration is used to
simulate an underdamped second—order subystem can be computed from Eq. (3.87)
by letting the raot A be complex in accordance with Eq. (3.14). Thus we abtain the
equivalent digital root A* as defined in Eq. (3.15), with the parameters e_and e
given by the following asymptotic formulas:

-~ 2 1 v
e, = (-§§3—EC)(wnn)2, e, X = (1-482)(w h)2 w,h<1 (3.95)

1
6
Here e, is the fractional error in the frequency of the characteristic root, as defined
by Eq. (1.38). Substituting Eq. (3.95) into Eq. (3.18), we obtain the formula for the
damping ratio error. Thus

e = g"_;=’§(t:—c3)(wnh)2, W h<<T (3.96)

Again. both the frequency and damping ratio errors vary as h2.

Next we consider the transfer function for sinusaidal inputs when RK—2 inte—
gration is used to simulate the second—order system given by Eq. (3.20). The trans—
fer function H(s) can be written as the sum of two first—order transfer functions in
accordance with the following formuia:

L J

H(s) = 212w s 1wl = " [H2() —H{ ()] (3.97)

Hols) = (3.98)

S—)\1' S-—)\z

and the characteristic roots A ; and X, are given by

3—-27

Ay=—Cw,+jw, f1-82, A= —Sw,—jw,/1-%Z (399

From Eg. (3.97) it is clear that we can represent the z transform of a digital system
that is simulating an underdamped second—order system in terms of the sum of the z
transforms for two first—order system simulations. Thus

]
2w, [1-¢2

where H'{ () and H§ (2) are the z transforms corresponding to the digital simulations
of H 4 (s) and Hy (s). respectively, as defined in Eq. (3.98). It follows that the error,
H'(elw)— H(jw), inthe digital transfer function for sinusoidal inputs can be
written in terms of the digital transfer function errors for the first—order subsys—
systems, i.e.,

He(2) = [H3@) —H]@)] (3.100)

j
2
2w, [1-1¢

He(elWh) —H(jw) = ([H5 (e1Wh) = Hpiw)]
—[Hi‘(ej“’h)—m(jw)]) (3.101)
From Eq. (3.91) with A = A, we see that H;(ejwh) — Ho(jw) takes the form

Up + Vpd 1 - 82 +j(ug+vid1—=22)

Ho— Hp = W, (3.102)
(jw—=Ax2) Z
where for RK—2 integration
tw2h? _ _ wW2h?/ W _ wZh?
up== L vp=0l vy = -t (“n)' vi=-2 (@09

Similarly, for A = X, we obtain the following formula for H; — Hy:

Up — Vrd ! T2 4 juy —vid -t2)

(jw—xq)?

H{—Hy = W (3.104)

n

Substituting Egs. (3.102) and (3.104) into Eq. (3.101) and noting that 1/H is equal to
(jw=x1)(iw =A2), we obtain the following formulas for the real part, ey, and
the imaginary part. e, of the fractional error in digital transfer function in simu—
lating a second—order undamped linear system:

3-28

~ w2 W 2 W
ey = 212 2 ZC[1+—}UI-+2— [2‘; -1 +——-]u1
[1——“—’—2-] +[2§ﬂ] wi n Wy
wﬂ wn
W w? W 4
] L [1—2§2-2§2—§——4]v1 (3.105)
n n wn '

1 2 2
~ Wiy 2_._01_] { &’_]
e, = 2— |1-2¢C u,+ 2811 + u;
A 212 2 { T i
[1—“’—} +[2§w9-} {wn Wi w3

2t
+ [2!2—1+2§2%+—:ﬁ}vr+4§%[§2—1}v1} (3.106)
n n n

When we substitute into Egs. (3.105) and (3.106) the formulas for u,, uj. v,. and
v; given in Eg. (3.103) for RK—2 integration. we obtain the following asymptotic

formulas for the RK—2 transfer function gain and phase errors in simulating a sec—
ond—order system:

1 w2 wh

—|-3+(@2-4%%)— +—

|H*| 12[(iy 4
1

Y = 1z R wh)Z wh«t (3.107)
|H| w2'2 W 2
[1———2 +[2C—]
wn. wn
[2
T 1+w—]
3wyl w? 5
ey = <H¥— <H = “(wh)®, Wh <« (3.108)

212
S
lA',l'l wﬂ

Note that the transfer function gain and phase errors, as given by Egs. (3.107) and
(3.108), vary as the square of h, the integration step size.

Before considering higher order RK integration methads, we examine the real—
time RK—2 algorithm introduced in Chapter 1. Like conventional BK—2, real—time
RK—2 is a two—step method that employs Euler integration for the first step. But
the first step is actually a half—step, which utilizes Euler integration to compute the
state half—way through the integration step. This estimate is then used to calculate

3-29

the derivative, which in turn forms the basis for the calculation of the state one full
time—step later. Applying the real—time RK—2 method, as defined in Egs. (1.21)
and {1.22), to the first—order equation given by (3.1) leads to the following differ—
ence equation:

A
xn+1/2—x + = (%X +Un). Xpa=Xo+ N(AX peysg +Unare) | (3.109)

Using a sample period T = h/2, we can rewrite Eq. (3.109) as the foliowing difference
equation:

Xmg=(1+2TA+2T202)X , +2TZAUp+ 2T Uy (3.110)

Taking the z transform, replacing T by h/2, and solving for H*(z) = X*(2)/F*(z). we
obtain

n(z+lz,\n)
H*(2) = (3.111)

2- (1 +Ah+%)\2h2)

We determine the equwalent characterlstlc root A" by settmg the denominator of H*
equal to zerowith 2z = e N T = eA M2 Then 22 = e A" and the denominator of
H* in Eg. (3.111) becomes the same as the denominator of H* in Eq. (3.84) for the
standard RK—2 method. Thus A" for real—time RK—2 is the same as A" for stand—
ard BK—2 and the characteristic root errors given in Egs. (3.88), (3.95), and (3.96)
when simulating first and second—order systems are therefore the same for both
methods.

To obtain the dtgntal transfer function for sinusoidal inputs we let z = e jwt
=elWh2Z i, Eg. (3.111) for H*(z). We then follow the same procedure used earlier
in Egs. (3.89) to (3.94) to obtain the transfer function gain and phase errors. In this
way the following formulas are obtained for real—time RK—2 simulation of a first—
order linear subsystem:

Hn 2__ 2
LI_—H||—1 = fractional error in gain = e, = w 23}‘ 5 wh)2
24 (W< + A
() (3.112)
~ ~ WA 2
£ZH*—<«H = phaseerror = e, = —~ (wh)4, wh<K1
A B(w2+a?)

Comparison with Eq. (3.94) for standard RK—2 shows that the gain error for real—
time RK—2 is less than half as large. This improved accuracy is doubtiess due to the

3-30

fact that up and up,,, serve as inputs for the nth integration frame in real—time
RK—2, which means that the input is sampled at twice the integration frame rate.
In standard RK—2 the inputs for the nth integration frame are up and up,,. which
represents an input sample rate equal to the integration frame rate.

The transfer function gain and phase errors in real—time RK—2 simulation of
second—order linear subsystems are determined using the same procedure employed
to obtain Egs. (3.107) and (3.108) for standard RK—2 integration. The real—time
RK—2 asymptotic formulas for transfer function gain error,ey. and phase error.ep.
are given in Table 3.2 at the end of this chapter. Comparison with the formulas for
standard RK—2 shows that the phase errars are identical, but that the gain error for
real—time RK—2 is at least a factor of two smaller. Again, this can be ascribed to
the doubled input sampling rate used in real—time RK—2 integration.

We next consider the RK—3 algorithm defined by Egs. (1.24) through (1.27) in
Chapter 1. When applied to the first—order linear system described by Eg. (3.1), the
method yields the following difference equation:

h - »
Xnpy =Xpt+ 4—(/\Xn+ 3AX a3 +U + 3Unan)
where (3113)

~

A
h
xn,g/g Xn+ ()\xn,1/3+Un+1/3) Xn,m =Xn+§()\xn+un)

Using a sample period T = h/3.we can rewrite Eq. (3.113) as the following difference
equation:

g 9 3. .9
xm—_-(1+3T>\+5T2)~2+§T3)~3)xn+(‘—1T +§T3A2)Un
9_, 9
+ 5T 2 Uy +3TUne (3.114)

Taking the z transform, replacing T by h/3, and solving for . H*(z) = X*(z)/U*(z)
obtain

3
ahz?+ lthzz + (%n+:—sx2h3)

H(z) = : : (3.115)
3 (1 +An +—2A2h2+6x2h3)

We determine the equwalent charactenstlc root ™ by settmg the denommator of H*
equal to zero with z = e" T = e" h/3 Then 23 = e)‘ h= 142" h+ (2" h)2/2

+- - - in the denominator of Eq. (3.84). Retaining terms up to order h4, we obtain
the following formula for the characteristic rooterror:

3—31

”» -’l' *2 ” ”»
x"_x+%(x*-x)(x +x)h+%(x AN A+A2)h2+%1(>‘ Y4h3 =10
(3.116)

Next we assume that |]Ah|<<1 and [A"— A| << |A|. Then the middle terms on the
left side of Eq. (3.118) are negligible and we have

" ~ 1 '
A A X —§A4h3, IAhI<< (3.117)

This equation is valid for both real and complex A . The fractional error in character—
istic root, e, . is given by

"—X N _1.3.3
er= T 2 -5 IARI<CT (3.118)

>

As expected for RK—3 integration, the error varies as the cube of the integration
step size h. From Egs. (3.36) and (3.60) we see that the comparable error for AB—3
integration is given by

AN-x, _ 3

3,3,3
)\ g A7 h% Iahla

g2, =

Thus the AB—3 root error is 9 times that of RK—3. On the other hand, the RK—3
algorithm requires three passes through the state equations per integration step. This
means that BK—3 will generally take three times as long to execute each integration
step when compared with AB—3. This results in three times the step size and hence
27 times the raot error, since we are dealing with a third—order method. The net
effect is to make the AB—3 error equal to 9/27 or 1/3rd the root error obtained
using RK—2 integration. .

_ To abtain the digital transfer function for sinusaidal inputs we let z = eJWT
= e W3 in Eq. (3.115) for H*(z). We then follow the same procedure used earlier
in Egs. (3.89) to (3.94) to obtain the transfer function gain and phase errors. In this
way the following formulas are obtained for AK—3 simulation of a first—order linear
subsystem:

A3
{H*| ‘ ‘ WA —ZU 3
— —1 = fractional error in gain = e, = (Wh)
IH] 72(w? +a2%)
(3.119)
2_gx2
ZH"—2H = phaseerror = e, = - —27=82% ()3, wh«

A 216(W2 4+ A2)

3—32

;

The characteristic root errors and transfer function errors for RK—3 simula—
tion of underdamped second—order linear systems are obtained using the same pro—
cedures employed for RK—2 integration. The asymptotic error formulas are given in
in Table 3.2 at the end of this chapter.

Finally, we consider the RK—4 integration algorithm defined by Egs. (1.29)
through (1.33) in Chapter 1. When applied to the first—order linear system describ—
ed by Eq. (3.1). the method yields the following difference equation:

A

Xt = Xn+ %()\Xn+2)\x 2 F2A X pais2 +)\Xn+1+Un+4Unq/2 +Upet)
where

A h A h, A
Xnrg =X+ "2‘()\Xn+Un). Xnsg =X+ ‘2"()\Xn+Un+1/2), (3.120)

A 2
Xn.q = Xn+ h(AXer'/z +Un+1)

Using a sample period T = h/2, we can rewrite Eg. (3.120) as the following difference
equation:

2

4
X =(1+2TA +2T2)~2+§T3A3+§T4/\4)Xn

1 2 2
! €12y L £
+(3T+3T A+3

4_ 4 2
2r 4372y ,.5
+(3T+3T A+3

2

TA+3TA3)u,

1
=T U (3.121)

T3A2)U .y + 3

Taking the z transform, replacing T by h/2, and solving for H*(z) = X*(z)/U*(z). we
obtain

%[22 +(4+2Ah+%A2h2)z +1 +Ah+12->‘2h2+1—>\3h_3]
H"(Z) =
2-(1+)‘h+-1é)\2h2+16,\2h3 iAZhS) (3.122)

As before, we determine the equivalent characteristic root A" by letting z = e>‘ T
= e A"h2; in the denominator of H»(z) and setting the denominator equal to zero.
Expanding e A2 in a power series and retaining terms to h9, we can solve for the
asymptotic formula for the charcateristic root error, A*— X . In this way we obtain

o ox —L 43
A oghn,

Again, this equation is valid for both real and compiex A. The fractional error in the

Ixhl<< (3.123)

3—33

characteristic root, e, . is given by

AN=XN,y 1 2.2
er= "5 ¥ —prht Iahl<< (3.124)

As expected for RK—3 integration, the error varies as the fourth power of the inte—
gration step size. From Egs. (3.36) and (3.63) we see that the comparable error for
AB—4 integration is given by

*

A ~ A —%Azhz, IAhI<< T

Thus the AB—3 root error is 251/6 or 41.83 times that of AK—4. On the other hand.
the RK—4 algarithm requires four passes through the state equations per integration
step. This means that RK—4 will in general take four times as long to execute each
integration step compared with AB—4. This results in four times the step size and
hence 256 times the root error. since we are dealing with a fourth—order method.
The net effect is to make the AB—4 error equal to 41.83/256 or about 1/6th the
root error obtained when using AK—4 integration.)

To obtain the digital transfer function for sinusoidal inputs we let z = erT
= el WH2 jn Eq. (3.122) for H*(2). We then follow the same procedure used earlier
in Eqgs. (3.89) to (3.94) to obtain the transfer function gain and phase errors. In this
way the following formulas are obtained for RK—4 simulation of a first—order linear
subsystem:

ex =

4
) W2— 52— 302 The
[H»| . . w2 4
— —1 = fractional error in gain & e, = (wWh)
fH 2880 (w2 + 22)
3 3.125
WA ‘5% _()
2H#—2«H = phase error = e, = (wWh)Y wh<<

A 720(w2Z+ A2)

The characteristic root errors and transfer function errors for RK—4 simula—
tion of underdamped second—order linear systems are obtained using the same pro—
cedures employed for RK—2 integration. The asymptotic error formulas are given in
in Table 3.2 at the end of this chapter.

We have noted in this section that Runge—Kutta algorithms enjoy a significant
accuracy advantage over Adams—Bashforth predictor algorithms of the same order
for a given integration step size. However, this advantage is more than offset by the
additional RK execution time that results from multiple passes per integration step.
Also, as noted in Chapter 1, RK algorithms are not compatible with real—time in—

3-34

puts. It should be noted, however, that AB algorithms can present startup problems,
perform poorly in response to step inputs, and generate extraneous roots which can
cause instability even for moderate integration step sizes. The RK algorithms suffer
from none of these problems. Even though RK methods introduce no extraneous roots,
it is nevertheless important to examine the region of stability in the A h plane when
using RK integration in order to determine the maximum allowable step size. This is
accomplished with the same procedure used in Section 3.4 for AB integration. Thus
we calculate the values of A h for which a pole of H*(z) lies on the unit circle in the
Z plane. In particular, we let z = eJ© in the denominator of H*(z) and solve for A h
as the polar angle is varied between 0 and IT. Application of this procedure to H*(z)
as given in Egs. (3.111), (3.115) and (3.122) for RK—2, 3 and 4, respectively, leads
to the stability boundaries shown in Figure 3.4. Values of A h lying within the bound—
aries correspond to stabie solutions.

Y ¥ 13y
Ah plane /'\w
: [P

Figure 3.4. Stability boundaries for Runge—Kutta integration algorithms.

Comparison of Figure 3.4 with Figure 3.1 shows that the stability regions for
RK integration are very much larger than those for AB integration. Note also that
the higher the order of RK integration, the larger the stability region. This is exactly
the reverse of AB integration, where the higher the order, the smaller the stability
region. This same observation applies when the RK stability boundaries of Figure 3.4
are compared with those in Figure 3.3 for the implicit algorithms. Thus the second—
order implicit method (trapezoidal integration) has a stability region which includes
the entire left—half A\ h plane. whereas the fourth—order implicit integration shown

3—35

in Figure 3.3 exhibits a stability region that is comparable with that of RK—4.

3.8 Adams—Moulton Predictor —Corrector Algorithms

in Chapter 1 we noted that the AB predictor algorithms can be combined with
implicit algorithms to mechanize the AM (Adams—Moulton) predictor —corrector al—
gorithms. In this section we examine the AM—2, 3 and 4 integration methods with
respect to characteristic root errors, and transfer function gain and phase errors. We
will also consider the extraneous roots which these methads introduce, as well as the
overall stability regions in the A h plane.

First we consider the second—order predictor—corrector algorithm, AM—2. In
Egs. (1.13) and (1.14) the general form of the equations is presented. When we apply
these equations to the first—order linear system given in Eq. (3.1), we obtain the
following singlie difference equation:

4 4 2
h 3.,.2 1 2
=+ = - - - 126
+(2+4)\h Jup 4Ah Un-1 (3.126)
Taking the z transform and solving for H*(2) = X*(2)/U*(z). we obtain
L 3 1
2[z +(1+35 A h)z th)

He*(z) = 3 1 (3.127)
2_(1+Ah +Z)\2h2)z + Zﬂhz

The two poles of H*(z) (i.e., the two roots of the denominator), z, and z,, deter—
mine the equivalent charcteristic roots. In particular, one of the two roots corres—
ponds to the ideal characteristic root, A, in accordance with the formula zy = e AR
Here A", as before, represents the equivalent characteristic root of the digital sys—
tem. Since the denominator of H*(z) in Eq. (3.127) is a quadratic in z. we can solve
analytically for the two poles. z, and z,. and thus determine the exact value of A"
as well as the exact value of the equivalent extraneous root. As we have noted in the
previous sections, it is also convenient to determine the approximate formula for A"

when the step size h is small. As before, we do this by replacing z with e A"h in the
denominator of Eg. (3.127), expanding e>‘ hina power series, and solving for the
root error A — X, When this is done, the asymptotic result agrees exactly with the
formula obtained for 2nd—order implicit (i.e., trapezoidal) integration. Thus the
fractional error in characteristic root, e . in accordance with Egs. (3.36) and (3.70).

3-36

is given by

A1
A ¥ —22p2 |ahR|<<1 (3.128)

2= T 12

Comparison with the AB—2 formula for e, following Eq. (3.88) shows that the AB—2
root error is 9 times larger in magnitude. On the other hand, AM—2 is a two—pass
method. This means that it will in general require twice the execution time per in—
tegration step. For second—order algorithms, doubling the step size means that the
accuracy is reduced by a factor of four. The net result is that AB—2 will exhibit a
characteristic root error that is 5/4 or 1.25 times that of AM—2. On this basis we
conclude that AM-—2 enjoys a slight edge as a second—order algorithm. But it does
have the disadvantage as a real—time method of requiring the input one—haif frame
before it is available in real time, as pointed out in Figure 1.8.

From Eg. (3.127) we can obtain the exact transfer function for sinusoidal in—
puts when AM-—2 is used to simulate a first—order subsystem, by replacing z with
eJWh The approximate asymptotic formulas for transfer function gain and phase
errors are obtained with the same procedures used in Egs. (3.89) through 3.94) in the
case of RK—2 integration. When this is done, the asymptotic formulas turn out to be
identical, again, with those based on second—order implicit integration. Thus Eg.
(3.39) with e;=— 1/12 and k = 2 yields the asymptotic formulas for the transfer
function gain error ey, and the phase error e, when using AM—2 to simulate alst—
order linear subsystem. In fact it turns out that all of the AM—2, 3 and 4 asymp—
totic formulas for characteristic root and transfer function errors are identically the
same as those for the implicit algorithms of Section 3.5. These in turn are given by
the single—pass formulas of Section 3.3, with the integration error coefficients e
equal to —1/12, —1/24 and —19/720, for AM—2, 3 and 4 integration, respectively.
For this reason it is not necessary to rederive the asymptotic error formulas for the
AM predictor—corrector algorithms.)

The exact formulas for characteristic root and transfer function errors are, of
course, unique for each AM predictor—corrector aigorithm. For AM—3 integration
they can be obtained by applying Egs. (1.15) and (1.16) to the first—order linear
system described by Eq. (3.1). When this is done, the following equation is obtained

for H*(z), the system z transform in AM—3 simulation of a first—order linear sub—
systemn:

1__2_[5 3+(8+)\h) 2-(1+@>‘h)z+-2-§)\h
H(z) =

(3.129)
3 (g, 13 115,22\ 2 2,2 25 (2,2
z (1+12)\h 144A h) +(}\h+ A h“)z 144>\ h

The three poles of H*(z) can be used to calculate the exact equivalent characteristic
roots for the digital system. One of these roots, X" corresponds to the ideal root. A .
The other two roots are extraneous. As noted above for AM—2, the asymptotic for—
mula for the fractional error in characteristic root, e, for AM—3 integration is
identical to the formula derived earlier for the 3rd—order implicit aigorithm. In ac—
cordance with Egs. (3.36) and (3.73) the formula is given by

AT—= A

1
v 33,3
e ; 24)\ he, |ahl<<1 (3.130)

Comparison with the AB—3 formula for e, following Eq. (3.118) shows that the AB—
3 root error is 9 times larger in magnitude. On the other hand, AM—3 is a two—pass
method. This means that it will in general require twice the execution time per in—
tegration step. For third—order algorithms, doubling the step size means that the
accuracy is reduced by a factor of eight. The net result is that AB—3 will exhibit a
characteristic root error that is 9/8 or 1.125 times that of AM—3. On this basis we
conclude that AM—3 enjays a slight edge as a third—order algorithm. Again, it has
the disadvantage as a real—time method of requiring the input one—haif frame be—
fore it is available in real time, as pointed out in Figure 1.8. It should also be noted
that the AM—3 root error in Eq. (3.130) has the same magnitude (but opposite po—
larity) as the RK—3 root error in Eq. (3.118). Since RK—3 is a three—pass method,
it will in general require 1.5 times longer to execute per integration step than AM-3
integration. This in turn means that RK—3 will exhibit a root error that is 1.5 cubed
or 3.375 times that of AM—3.

From Eg. (3.128) we can obtain the exact transfer function for sinusoidal in—
puts when AM-=—3 is used to simulate a first—order subsystem, by replacing z with
eJWh, The approximate asymptotic formulas for transfer function gain and phase
errors are, as noted above, identical with the errors for the third—order implicit al—
gorithm in Section 3.5. Thus Eq. (3.38) applies, with ey = —1/24 and k = 3.

Finally, we consider AM—4 simulation of the first—order system given by Eq.
(3.1). The difference equation is obtained by applying Egs. (1.17) and (1.18) to (3.1).
Taking the z transform and solving for H#(z), we obtain

H*(@2) =

-[3 4+<‘—g+-5-§xh) 3- (3 gxh)22+(‘—+1?xn)z—9xn

24- (1+—>\h+55)\2h2)z3 (—-Ah+59>\2 2y, 2- (53)\h+22)\2 n2)z- o 2,242

(3.131)

The four poles of H*(z) can be used ta calculate the exact equivalent characteristic
roots for the digital system. One of these roots, A", corresponds to the ideal root, A .
The other three roots are extraneous. As noted for AM—2 and 3, the asymptotic for—
mula for the fractional error in characteristic root, e, . for AM—4 integration is
identical to the formula derived earlier for the 4th—order implicit algorithm. in ac—
cordance with Egs. (3.36) and (3.76) the formula is given by

AT= A 19
A 720

A3h3, |ahl<<t (3.132)

2

el-

Comparison with the AB—4 formuia for e, following Eg. (3.124) shows that the AB—
4 root error is 251/19 or 13.2 times larger in magnitude. On the other hand, AM—4
is a two—pass method. This means that it will in general require twice the execution
time per integration step. For fourth—order aigorithms, doubling the step size means
the accuracy is reduced by a factor of 16. The net result is that AB—4 will exhibit a
characteristic root error that is 13.2/16 or 0.826 times that of AM—4.0On this basis
AB—4 enjoys a slight edge over AM—4 as a fourth—order integration algorithm. We
also note that AB—4 is compatible with real—time inputs. However, it has the dis—
advantage of having a much smaller stability region in the A h plane than AM—4, as
we shall see later in this section.

Comparison of Eg. (3.132) for AM—4 with Eq. (3.124) for RK—4 shows that
the AM=—4 raot error is 19/6 or 3.167 times larger than the RK—4 root error. Since
RK—4 is a four—pass methaod, however, it will in general take twice as long to exe—
cute per integration step as the two—pass AM—4 method. For fourth—order algo—
rithms, doubling the step size means increasing the error by a factor of sixteen. The
net result is that AM—4 will exhibit a root error which is 19/96 or 0.198 times that
of RK—4 integration.

We have aiready noted that the asymptotic formulas for characteristic root
errors, and for transfer function gain and phase errors. turn out for AM methods to
be identical with the formulas developed in Sections 3.3 and 3.5 for the implicit in—
tegration methads of corresponding order. Thus Egs. (3.41), (3.42) and (3.43) with e I
equal to —1/12, —1/24 and —19/720 for AM—2, 3 and 4, respectively, give the for—
mulas for the frequency and damping ratio errors in AM simulation of underdamped
second—order systems. Similarly, the transfer function gain and phase errors are
given for AM—3 by Egs. (3.45) and (3.46), and for AM—2 and AM—4 by Egs. (3.47)
and (3.48).

We now examine the stability regions in the X\ h plane for AM integration. The
method used to generate the stability boundaries is the same as that used previously
for AB. implicit. and RK integration. Thus we let z = e © (i.e.. |z|=1) in the de—

3-39

nominatar of Egs. (3.127), (3.128) and (3.129) for AM—2, 3 and 4, respectively. The
denominators are then set equal to zero and the dimensionless step size Ah is deter—
mined for different values of the polar angle . In this way the stability boundaries
shown in Figure 3.5 are generated. Values of Ah lying within the boundaries corres—
pond to stable solutions.

Figure 3.5. Stability boundaries for Adams—Moulton integration algorithms.

Comparison of Figure 3.5 with Figure 3.1shows that the stability regions for
AM integration are significantly larger than those for AB integration. In particular,
consider the stability boundary when the characteristic root A is negative real, cor—
responding to a stable first—order linear subsystem. The AM-—2 algorithm becomes
unstable for |\ h| > 2. compared with |\ h| > 1 for AB—2 integration. For both algo—
rithms the instability is due to the extraneous root. It is clear that AM—2 permits
double the integration step size before instability results. For negative real A . AM—3
becomes unstable for I\ h| > 1.7288. versus IA h| > 0.5556 for AB—3: AM—4 becomes
unstable for [\ h| > 1.2848 compared with [A h| > 0.3 for AB—4.

On the other hand, comparison of Figure 3.5 with Figure 3.4 shows that the
stability regions for AM integration are generally smaller than those for RK integra—
tion, especially for the higher—order algorithms. Thus the choice of the optimal in—
tegration method involves a number of tradeoffs, including dynamic accuracy needs,
the stiffness of the system (i.e., the ratio of maximum to minimum characteristic—
root magnitudes), and the requirements for real—time inputs and outputs. Weighting
factors in these tradeoffs will become more clear as we consider additional methods
and examples in the chapters to follow.

3.9 Single—Pass Adams—Moaulton Integration Algorithms

An interesting modification of the two—pass Adams—Moulton integration for—
mulas of the previous section utilizes derivatives based only on the predicted values
of the state—variable derivatives. Thus the second—order algorithm given earlier in
Egs. (1.13) and (1.14) for conventional AM—2 is madified to the fallowing formulas:

"~ h ~ A ‘
Xnﬂ = Xn+ E [BF(Xn'Un) - F(Xn-1cUn-1)] (3.133)
X ot = Xt 5 LFRp,Un) + FK oy U o) (3.134)

Since F& ne1- Y nat) o is the only new derivative which must be evaluated for the nth
integration frame, F(X n-Y n) having been evaluated in the previous frame, the al—
gorithm requires only one evaluation of the state variable derivatives per integration
step. For this reason we call it a single—pass AM—2 method. It will frequently run
approximately twice as fast as the conventional two—pass AM-—2 algorithm. This is
because the computation of the state—variable derivative functions is often the pre—
dominant element in the execution time for each integration step, as we have aiready
observed in comparing the speed of single—pass and multiple—pass algorithms.

We next apply the single—pass AM method given by Egs. (3.133) and (3.134)
to the first—order linear system of Eq. (3.1). Taking the z transform of the resulting
difference equation and solving for X=(z)/U=(z), we obtain the following formula for
the system z transform:

g(z3+ z2)

H*z) = 3] (3.135)
23—(1+2)\h)22+-2-)\hz— E)\h

One of the three poles of H*(2) corresponds to the digital root, >\", which is approxi—
mately equal to the ideal characteristic root, A\. The other two poles of H*(z) cor—
respond to extraneous roots. It turns out that the asymptotic formulas for the root
errors for both real and complex A agree exactly with the formulas for 2nd—oarder
implicit (trapezoidal) integration, as summarized in Sections 3.3 and 3.5. The asymp—
totic formulas for transfer function gain and phase errors also agree exactly with the
equivalent formulas for 2nd—order implicit integration in Sections 3.3 and 3.5. Thus

the single—pass AM—2 algorithm matches the accuracy of the conventional two—pass
AM—2 as well as trapezoidal integration, at least for small integration step sizes.

The disadvantage of single—pass AM—2 lies with the extraneous roots and the
instability they can cause if the step size is too large. The stability boundary in the

3—41

Ah plane is obtained using the same methads employed in Section 3.4 for AB inte—
gration. Thus we set the denominator of H»(z) in Eq. (3.135) equal to zero and solve
for Ah with z equal to values on the unit circle (i.e.. |zl = 1). In particular, for z =
—1 we find that Ah = —1/2. The complete stability boundary for single—pass AM—2
is shown in Figure 3.6. Comparison with Figures 3.1 and 3.5 shows that the stability
region for single—pass AM-—2 is significantly smaller than the stability region for
either AB—2 or standard (two—pass) AM—2. This is not unexpected, since single—
pass AM—2 introduces two extraneous characteristic roots per state variable, as op—
posed to one extraneous root for AB—2 and AM—2. The instability beyond the upper
boundary segment in Figure 3.6 is due to one of the extraneous roots.

: : Y j.8
i Ah plane 4 :

Figure 3.6. Stability boundaries for single—pass AM (SPAM) algorithms.

For third order single—pass Adams—Moulton Egs. (1.15) and (1.16) are modi—
fied to the following form:

X ey = Xp + %[zaF(in,un)-1sF(>‘<n_,.u,,-, +5F (X pp-Uneg)] (3.136)
h - -~ -~
xnﬂ = xn +]_Z'[SF(an'Unq)"" BF(Xn,Un) b F(Xn_1.Un-1)] (3.137)

When we apply Egs. (3.136) and (3.137) to the first—order system of Eq. (3.1). take

3—42

the z transform, and solve for X*(z)/U=(z), we abtain the following formula for the
system z transform:

%(524+Bz3—z)

H*(z) = (3.138)

2 20

4_(y 4.8 3,31
z (1+12)\h)z +12Ahz =

3]

Ahz + 2 Ah
Since the denominator of H*(z) is fourth—order, whereas the system being simulated
is first order, it is evident that single—pass AM—3 produces three extraneous roots
per state variable. Figure 3.6 shows the stability boundary in the XA h plane. When)
is negative real, the system becomes unstable for A h < —2/7, i.e.. for an integration
step size h greater than 2/7th the system time constant. Again it turns out that the
asymptotic formulas for the characteristic root and transfer errors for single—pass
AM—3 are identical with the equivalent formulas in Sections 3.3 and 3.5 for implicit
Jrd—order integration and hence for conventional two—pass AM—3 integration.

From Egs. (1.17) and (1.18) the difference equations for fourth—order Adams—
Moulton integration become

rS

h . .
Xpet = Xp + 57 [85F (X Up) =59F (X g Uy
+37F (XppeUpg —9F (Xp3-Upg)] (3.139)

h - -
Xpet =X + 2—4[9F(x,,,,,u,,,,)+19F(xn,un)
—5F (X pog-Upey + F(X g Upeg)] (3.140)

When we apply Egs. (3.139) and (3.140) to the first—order system given by Eq. (3.1),
take the z transform, and solve for X*(z)/U*(z). we obtain the following formula for
the system z transform: _

2%(925'*'1924"523;' z)

H=*(2) = (3.141)
45 g-
2 L v =
Ahz +24>\hz—24)\h

64 95 9N
z5-(1 +2—;‘)xh)z"'+2—4)\h23—271
Since the denominator of H*(z2) is fifth—order, it is evident that single—pass AM—4
introduces four extraneous roots per state variable in the system being simulated.
Figure 3.6 shows the stability boundaries in the Ah plane. When A is negative real,
the system becomes unstable for A h < —3/19. Once again the asymptotic formulas
for single—pass AM—4 are identical with the equivalent formulas in Sections 3.3 and

3—43

3.4 for implicit 4th—order integration and hence for conventional two—pass AM—4
integration.

Comparison of the stability boundaries in Figure 3.6 for the single—pass AM
algorithms with the stability boundaries in Figure 3.5 for the conventional two—pass
AM algorithms shows that the single—pass algorithms have substanially smaller sta—
bility regions for algorithms of the same order. However, we must keep in mind that
single—pass AM methods will usually execute twice as fast on a given digital com—
puter as will two—pass AM methods. This in turn translates into half the mathemat—
ical step size. which means that the stability regions in Figure 3.6 should be doubled
in size when making direct comparisons with the stability regions of Figure 3.5. For
integration step sizes small enough to insure that the asymptotic error formulas are
valid, single—pass AM methods of order 2, 3, and 4 will enjoy accuracy advantage
factors of 4, 8, and 16, respectively, over conventional two—pass AM methods of the
same order. Again, this results from the halved step size of single versus two—pass
methods when solving differential equations dominated by complexity of the state
variable derivatives.

3.10 Accuracy Summary for Real—Time Integration Methods

In this chapter we have developed methods for exact computation of the char—
acteristic root errors, and the transfer function gain and phase errors, in simulating
linearized versions of dynamic systems described by nonlinear differential equations.
We have also developed approximate analytic formulas for the dynamic errors when
the integration step size is sufficiently small. In each case the errors depend on the
particular integration method being used, as well as the integration step size, h. In
the case of characteristic roots. the errors vary as A hl K. where k is the order of
integration method and X is the eigenvalue. In the case of transfer functions for sin—
usoidal inputs of frequency W, the gain and phase errors vary as (w h)k.

If the required accuracy of simulation is quite high, for example, dynamic er—
rors of 104 or less, then the approximate asymptotic error formulas are valid. They
are simple enough to be used directly to compare the dynamic performance of dif—
ferent integration methods, and to determine for a given method the required inte—
gration step size h to meet specific dynamic accuracy needs. On the other hand, if
the dynamic accuracy requirements are more modest, for example, allowable frac—
tional errors abaove 103 then it becomes important to assess the validity of the ap—
proximation formulas for the dynamic errars. In Figure 3.7 we attempt to do this by
plotting the ratio of the exact eigenvalue error to the approximate value based on the
asymptotic formulas for small step sizes. The ratio is plotted against dimensioniess
step size, I\ hi, for five different integration algorithms. The ratio should equal unity

3—44

8 r N : : N casaw ..;;

. 4 3 4 4

‘ L . Al t

} : / / : :

g R R D B LT T T R 3

1] . L) 4 ‘

1] 1] 1] + 1]

L) . . 4 .

6 ll“ll“\ll‘\\‘l“\\.\“\\t.“!“\‘\““‘ enscsescssananananye .\“‘l““l“l‘l‘\\ll‘\l“l!ll““‘l“‘l“:

\ ' . 1]

1) 13 L) . 1]

e 5 : /; N N N
---------- Yeccvcecscnsvnbocssnqecane - Y - mwcead

A exact : 7 ; : :
— i seam-2 : ; :
‘II“‘Q!“II‘I“II‘ ‘l‘ll AL13 %Y atsase ‘I“.“ Ssesssaneny AR LA LI T YT Y Y Y ¥ “QIIII“!‘IIQ“‘Q.I Y

Aapprox 4 P NN i H M
. N AM-Z : : BN

I N R ... 2 s

v N :

: Trapezomal :

2 eetee ‘""“:"""““'““““L““\‘"““"““‘

]

;!(

bovsed
(LY DY .

o

8 + L] . 4

E : 3 ! !

7 + + + vz s e e e X
‘-lIil‘lllll'll‘lll.lI.‘Ill.ll'l..'!lll.'l.l!lll.-l.llll. hAAAA AL LAl Ll LTI Y LY Ty Y Y YT Y Y Y rpupupuy

° : : :

+ 1] 4+ 1] 4+

5 L4 : i i -

X exact SpAn-a / s s
*+ 4 L] + .

A approx 4 pevsscsscssussusesenhfuccsssncnsennunss ; tesssusscssesfuenay! :\"--‘--ng-c“‘n-'.i‘ﬁitnt:-!“.‘.‘.t.‘ttnts
: AM-3 H ! 3rd-ordgr implicit !

3 : mnnnnd \

s P A3 | 5

2 \.----‘-n.---.-------"-- Sstsstctssstnrteasesstnnnnsasaasy) Tessscnaney

H : ~—TRK-3] ;

1 T :] 5 :

0 ! ! ! : }

o
N
S
o
©

.
.
.
.
.
.
.
.
»
.
.
.
s
-
.
Ll
.
-
-
4
.
.
.
.
.
.
-
-
.
.
.
-
.
.
.
a
-
-
»,
]
.
.
.
-
-
.
.
-
.
.
-
.
.
.
.
-
-

/

.
-
.
.
-
-
.
-
-
.
-
»
.
.
.
.
.
.
.

4
.
»
*
.
.
o
.
»
.
.
.
*
.
.
.
.
.
»

-
Q

Prerposcs

socersprvas
Ccorsrprocn

“-.ll'nlttl-‘-tonnQltﬁc.-nni'cliccisn AL AL LTI YT IR Y R YT YY

0 O g4 o™

Sewons

AL AR A AL T L LYY 2 Y Y Y R T R gy

Prvovrpgroced

e
A exact

Poseorvpoosvsbovrvrpovnnd

vease PPN

4th- order 1mp11c1t

..........

vroedrorss

E-3

€a approx

)
sovsopecesdoccss
‘
.
\'\

s
+
.
+
A
\
N
.
.
H
v
I
.
h
'
~

.ew

LY TS ¥

L
codosvsny

3 ’ / AB-4
2:\......7(........;..................

B SR Rt

RK-4

vdesa

L]
seswstonshipecscdosens

+
]
LT T TP PP

Q [*e=r -]

0 .2 .4 .6
Dimensionless step size, |\ hl

—b

Figure 3.7. Ratio of exact to approximate characteristic root errors.

3—45

.0

when the exact root error is equal to the value based on the asymptotic formula. In
the figure it is evident that the exact root error generally exceeds the asymptotic
error, especially for larger step sizes. This is particularly true in the case of the AM
(Adams—Moulton) methods and the SPAM (single—pass Adams Moulton) methods. The
plots in Figure 3.7 are terminated whenever the dimensionless step size [A hi exceeds
the value beyond which the simulation becomes unstable due to an extraneous root.
For example, the plot for AB—4 is not extended beyond A hl = 3/10. Reference 10
Figure 3.1 shows that instabilty results for larger step sizes, even though the frac—
tional error in the principle root. as reflected by Figure 3.7. is equal to 1.578 times
the asymptotic error, i.e., 1.578(251/720)(0.3) 4 = 0.00446.

Figure 3.7 permits assessment of the validity of asymptotic formulas only in
in the case of characteristic root errors. It turns out that the results for transfer
function gain and phase errors are similar.* ,

Table 3.1 summarizes the values for the integrator error coefficient ey for all
integration algorithms considered in this chapter except Runge—Kutta. All of the al—
gorithms in Table 3.1 behave as single—pass methods in regard to the asymptotic
formulas for characteristic root errors, and transfer function gain and phase errors.
Thus the formulas developed in Section 3.3 for these various error measures in terms
of the order k of the algorithm and the integrator error coefficient ey are valid for
every method in Table 3.1, For each method the table references the numbers of the
equations which give the asymptotic error formulas.

We noted in Section 3.7 that the asymptotic error formulas for the multiple—

pass Runge—Kutta algorithms must be developed separately. These results are sum—
marized in Table 3.2.

« For specific examples see R.M. Howe, "Special Considerations in Real—Time
Digital Simulation,” Froc. 1983 Sunmer Computer Simulation Conference P.O.
Box 2228, La Jolla, Califarnia 92038, pp 64—71.

346

Table 3.1

Error Summary for Single—Pass Integration Algorithms

H;(e jw h) = |ntegrator transfer function for sinusoidal inputs

In general, H;(ejmh) X - 1 - . Wht
jwt +e (wnk]
ey = 2 ;)‘ = —e (Ah)k | INRICK
_ Reference Egs. for Reference Egs. for
Integration k e characteristic transfer function
algorithm root errors errors
Euler 1 15 3.7). (3.16). (3.19) (3.11—12), (3.24)
AB—2 2 132 (3.36). (3.41) (3.39). (3.47—8)
AB—3 3 3 (3.36), (3.42) (3.38), (3.45-6)
8
AB—4 4 251 (3.36). (3.43) (3.39). (3.47-8)
720
Implicit 2 - 1l2 (3.36), (3.47) (3.39), (3.47-8)
Implicit 3 - 5174 (3.36), (3.42) (3.38). (3.45—6)
(mplicit 4 - 7‘2_% (3.36). (3.43) (3.39), (3.47—8)
Power series 2 16 (3.36). (3.41) (3.39). (3.47-8)
Power series 3 214 (3.36), (3.42) (3.38), (3.45—-6)
Power series 4 %} (3.36). (3.43) (3.39). (3.47-8)
AM—2, Single—pass AM—2 tdentical to Implicit, k = 2
AM=3, Single—pass AM—3 Identical to Implicit, k = 3
AM=—4, Single—pass AM—4 identical ta Implicit, k = 4

3—47

Table 3.1

Runge—Kutta Characteristic Root and Transfer Function Errors

First—0Order System, BK—2

_A=A A 1 n)2 0 Iohi
AT T 7% '

_ w?+3)?
HoH) 12(w2+ A\2)

. wh
6w+ A2)

(mh)z, eA=AH~—4H% (Wh)z

w*
co= o1 2 T4t (Wn)?, eg=1"-T 2 S (8- 83) (W)
d
[gt poarzyl , w]
12[3+(2—45°) §+w‘,§] , L 3w, w? 2
w212 W i w
1-=| +|20= 2| * |12y
w2 W, “n “n

A 6
Hu 2 2
L 2o WA (un)2 e, = chnmcH 2 - —22(wh)?
IH 24(W< + %) 6w+ A¢)
Second—QOrder System. Real—Time BK—2
w4 1 2 2 . 1 3 2
ew— —(»——1 = ‘6(1-4§)(wnh) , E<=C -C 35(2—2)(wnh)
d
2
s oag 2w W lul e
53| 3+ @-45%) ﬁ+wﬁ] , 3wl w?
ey = (wWh)$ €= wh)

3—48

Table 3.1 (continued)

First—Qrder System, RK—3

}\3

WA-2— 2 2
ey = -—(Ah)° e =2-——F (wh)> e, =- Wh
AT 24 M 72(w2+02) A 216(w2+>\2)()

Second—QOrder System, RK—3

e, = Jg(zc3—c)(wnh)3, egs%m—c?)m—u?anhﬂ
1o W w2 2 4
_—ch—[1+FJ _1_[7.*.5(2{2_1)&’_“_2&_]
L e ¥n n 3 we i
e, = ~~ n n 3
W W 212 2
-+ 28— 1= W W
n n (.un (.x)n
First—0Order System, RK—4
" 4 3
1 . w’-—sz\z—aua—é . WA —5A° .
e, = —— (Ah)? e_=x : (Wh)Y & = (Wh)
A 120 M 2880(W2+ A2) AT 720(w?2 + A2)

Second—Order System, RK—4

- (1-1282 41604 (W n)¢ e 2 —515(1— e2)(e-2¢3)w,n)*

n

®w = T 3g
w% . w2 wh
'g"éal1[]—2+4ﬂ§2—5+(28§‘—4)U§——4]
W W
ey = n N2 wh)* wWh<<
wn wn
W 2 4
n 3 W W
+ —_ — ——
24uw[5c (20¢ Mc)w§+wg])
e, = (Wh)", WhK 1
A w212 w 12
W W,

CHAPTER 4
DYNAMICS OF DIGITAL EXTRAPOLATION AND INTERPOLATION

4.1 Introduction

The estimation of future values of a time—dependent function based on current
and past values of a data sequence representing the function is known as extrapolation.
The estimation of function values between data points is known as interpolation. Both
digital extrapolation and digital interpolation can play an important role in digital
simulation of continuous dynamic systems. For example, digital interpolation can be
used in the simulation of a pure time delay, often called a transport delay. Digital
extrapolation can be used for predicting future values of a time—dependent function. In
real time digital simulation this can be useful in compensating for delays in signals
which are interfaced to the computer.

One of the most important applications of digital extrapolation and/or inter—
polation occurs in the generation of a fast data sequence from a slow data sequence. The
slow data sequence might represent the output from the simulation of a slow
subsystem which is driving the simulation of a fast subsystem. Assume that the fast
subsystem uses an integration frame rate which is an integer multiple N of the inte—
gration frame rate used for the slow subsystem. From the data sequence output of the
slow subsystem it is necessary to generate a data sequence which has a sample rate that
is N times larger. This is necessary in order to provide inputs to the fast subsystem at
its integration frame rate. The use of multiple integration frame rates within a digital
simulation can often be used to improve the accuracy of a real—time digital simulation,
or to speed up a non—real—time simulation in order to make it more economical to
run. This is especially true in the case of many stiff systems, where the ratio of the
largest to smallest eigenvalue magnitude values in the quasi—linear case is very large.

In this chapter we deveiop a number of digital extrapolation and interpolation
algorithms and analyze their accuracy in the frequency domain in terms of gain and
phase errors. Because the data sequences representing the digital signals are assumed to
have a fixed sample period, the method of z transforms can be used for this analysis.
The formulas for gain and phase provide a basis for selecting the most appropriate
algorithm for a given application. The specific case of extrapolation or interploation to
generate a fast data sequence from a slow data sequence is analyzed using a discrete

Fourier series to represent the periodic extrapolator/interpolator. When the slow
data sequence is a sinusoid, this analysis provides formulas for the fundamental and
harmonic components present in the fast data sequence. This information can in turn
be used to estimate the dynamic errors in the fast data sequence.

4.2 First—Order Extrapolation based on r, and r_,

As a first example, let us consider digital extrapolation based on the current
value,r .. and the immediate past value, r_,. of a digital data sequence. Let h rep—
resent the time between samples. Then we can approximate the time function, r(t),
represented by these two data points using the zeroth and first—order terms of a
Taylor seies expansion about t = nh. Thus we let the approximation t:(t) be given by

) = r, + r“—;\-ﬂ—‘ (t = nh) a.1)

Here (r, —r,_,)/h is the numerical approximation to r. a obtained from a back—
ward dlfference From Eq. (4.1) we see that r(nh) = M and rl(h—1)h] = Foo1- SO
that the approximation function r(t) passes through the data points r and r_;.
Next assume that we wish to extrapolate ahead in time by ah seconds, where
a represents a dimensionless extrapolation interval. From Eg. (4. 1) the extrapclated
time function r(nh + ah), which from now on we will designate as Fneg- 1S iven by

rioh +ah) = r . = r +alr,—roy) (4.2)

For a =1 the prediction interval a h = h, and l:ma = FM . the extrapolated value
for r,,, based on r and r,_,. Note that for —1<a< 0, Eq.(4.2) represents in—
terpolation between r_, and r .

We now take the z transform of the difference equation represented by (4.2) in
order to develop the formula for the extrapolator transfer function. Thus

R;(@ = R*(2) + a(1 - 2" V)R*(2) (4.3)

where R} (z) is the z transform of the data sequence represented by r, .. The ex—
trapolator z transform, Hg (2) . is given by

R“
He (@) = H?'Z; =1+a(1=-21) (4.4)

The extrapolator transfer function for a sinusoidal input data sequence of frequency

4-2

W becomes

Ha(edWhy =1 4 a(1 = e~ W) (4.5)

An ideal extrapolator with prediction interval ah has the transfer function He (s) =
edNS_ For sinusoidal inputs the ideal extrapolator transfer function is given by

He(jw) = eJaWh | (4.6)

From Egs. (4.5) and (4.6) we obtain the foilowing formula for the fractional error in
the digital extrapolator transfer function:

He(elWh)

—1 = e—JaWhpy 4 5(1 = ¢~ iWhy (4.7)
He(jWw)

When the exponential functions in Eq. (4.7) are expanded as power series, the follow—
ing formula is obtained for He/Heg —1":
He a(l+a 1+3a+2a?
He , _ali+a) (Wh)? + a(a‘)
He 2 b

(Wh)3 + - - - (4.8)

In general He/He—1 in Eg. (4.8) will be a complex number which is smail in mag—
nitude when the extrapolator is reasonably accurate. Under these conditions we have
shown in Egs. (1.42) and (1.43) in Chapter 1 that the real part of Hg/He—1 equals
the fractional error in transfer function gain, and that the imaginary part equals the
the phase error. Thus

1
ey 2 a(—24’-""—2(wh)2, Wh << T (4.9)

I
b
i

a(1+3a+2a?)

- (Wh)3, Wh<< 1 (4.10)

ZHg —4He = ea

e

Although Egs. (4.9) and (4.10) are approximations based on the dimensionless fre—
quency W h being small compared with unity., the formulas are reasonably accurate up
to Wh = 0.5 for —1<a<1. Of course Eq. (4.7) is exact and can be used to calcu—
ey and e, for any specific Wh and a. From the asymptotic formulas in Eqs (4.9)
and (4.10) we note that the extrapolator gain error is proportional to (w h) and the
phase error is proportional to (W h) . Thus the predominant error will be a gain er—
ror for extrapolation based on o and r,_,. Figures 4.1 and 4.2 show exact plots of
ey and e, versus Wh for a= 0.5 for a number of extrapolation algorithms, in—
cluding the one we have just considered here.

4-3

From the extrapolator gain and phase errors, ey and ey . we can estimate the
effect of extrapolator performance as part of a digital simulation. In general, these
frequency—domain results provide more useful error measures than results based on
errors in the time domain for specific time—dependent functions, r(t).

4.3 First—Order Extrapolation from r . f'n

Another methad for first—order extrapolation is based on using r , and fn in—
stead of r, and r,_ ;. This can always be done if r, is astate variable, since under
these conditions the time derivative r , is available from the state equation. In this
case the extrapolation formula becomes

r(t) = r+r,(t—nh)) (4.11)

From Eq. (4.11) it is clear that r:(nh) =r, and t:(nh) = fn. If we lett —nh = ah,
the prediction interval, then from Eq. (4.11) we obtain the following formula for the
for the extrapolated data point, r,,:

-~

Mea = rn+ahr:n (4'12)
Taking the z transform of Eq. (4.12), we have

Ri(2) = R"(@) +ahR* @) (4.13)

For a sinusoidal data sequence with r | = ejwnh, it follows that fn = jWw ej Wnh
= jwr, and Eq. (4.13) becomnes

RE(eWhy = (1 +jawn)R"(eIWh) (4.14)

Thus the digital extrapolator transfer function for sinusoidal inputs is given by

R*(elWM)

Dividing Ha in Eg. (4.15) by the ideal extrapolator transfer function He of Eq. (4.5),

we obtain the following formula for the fractional error in the extrapolator transfer
function:

Ha(el W)
He(jW)

Expanding the exponential function on the right side of Eq. (4.16) in a power series,

1 = e—JaWh(1 +jawn) (4.16)

4—4

107" ro.r Bz
Fractional S — 7/9 ”
GainError -2 \‘ \// /7 A
ey | M T L7 ;;//
1073 — = // e
|1
10‘4 / | / A

<]
/ - r r / /< \ .
10_5/ n {\1\-1 n;z// / O PP R
}// // r ,r\ Jr.r

108 P P n-'n-1-'"n-" n-1
vd ///
10‘7 / //
.0 .02 .03.04.05 .07 .1 .2 .3 .4.5 .7 1

Wh

Figure 4.1. Fractional gain error versus demonsionless frequency for extrapolator
algorithms; h = sample period; extrapolation interval ah = h/2.

1
-1 1
" _ ff”;ff;
10-2 e n- V//7149/
ZlP%
Phase Errorm_3 Mn" -1+ n-2 >////1//)
1074 Vﬁ/ //
A
L1 \ -
107 ///1' A rn'r”//
s N| | - .l
- ///// rn,rn_,,rn/ el et FheF e
— S
101 L]
.01 .02 .03 .04.05 .07 .1 2 3 .4.5 7 1

W h

Figure 4.2. Phase error versus dimensionless frequency for extrapolator algorithms;
h = sample period; extrapolation interval ah = h/2.

4-5

we obtain the formula

Hea 2
He . _a

o . ad 3

= —(Wh)* — j—((Wh)" +--- 4.17
M. 5 (Wh)® — j = (Wh) (4.17)
It follows that the asymptotic formulas for the fractional error in gain and the phase

error are given by

|Hel a2 2
— =1 = = —(Wh)c. Wh<(1 4.18
» 33 3

4He —4He = ey = —?(wh) . Wh< T (4.19)

From Eags. (4.18) and (4.19) we see that here again the first—order extrapolator gain
error is proportional to (wh)2 while the phase error is proportional to (W h)'“?' Thus
the gain error will predominate. Exact plots of ey and e, versus Wh for the r, r'n
extrapolation algorithm considered here are shown in Figures 4.1 and 4.2 for a = 0.5.
These plots plus a comparison of Egs. (4.18) and (4.19) with Egs. (4.9) and (4.10)
show that extrapolation based on r . r n is significantly more accurate than extrap—
olation based on r .. r_,. This is further confirmed by Figure 4.3, which shows plots
of the gain error coefficient, ey /(wh)2 versus dimensionless extrapolation interval
a, where 0 < a<1 represents extrapolation and —1 < a < 0 represents interpolation.

1.0
€n
(wh)? "n-Tn-
0.5 —
0.0 _ —~ rn":n
1.0 0.5 00 0.5 1.0
0.5

Figure 4.3. Gain error coefficient, en/(wh)z, versus dimensionless extrapolation
interval, a, for first—order extrapolation algorithms.

4—6

Figure 4.3 shows that whereas the r . r n algorithm is superior for extrapolation, the
r - -1 dlgorithm is superior for interpolation.

It should be noted that both r.r,, extrapolation and r, r:n extrapolation
exhibit gains appreciably greater than unity when Wh exceeds unity. From the exact
formula for H§ in Eq. (4.5) it can be shown that the gain [Hg| for a given prediction
interval, a, peaks for r . r _, extrapolation at the frequency given by Wh =T . The
corresponding peak gain is equal to 1+ 2a. For the extrapolation based on r . r it
is apparent from Eq. (4.15) that the gain is equal to [1+(aW h)2]1/2. Ideally, the
extrapolator gain should be equal to unity for all frequencies. In general, one does not
expect significant frequency components above Wh =1 in the data sequence corres—
ponding to r,. But any such components can get amplified appreciably with the
first—order extrapolation algorithms considered in this section.

4.4 Second—Order Extrapolation Basedon r.r.,.r.,

In this and the following two sections we analyze several second—order extrap—
olation algorithms. First we consic!er extrapolation based on the data points r . r
and r_,. If aquadratic function r(t) is passed through these three points, the fol—
lowing formula results:

3rp—4r+rns (t—nh) + =201+ neo
2h 2h2

(t—nh)2 (4.20)

rt) =r, +

Here the coefficient of (t — nh) is a backward difference approximation to r, and the
coefficient of (t — n h)2 is a backward difference approximation to Fn. If we substi—
tute t = nh+ah into Eq. (4.20), where ah is the prediction interval, we obtain the
extrapolation formula in terms of the dimensionless prediction interval a. Thus

- 2+3a+a?
a = 5, 'n~ (2a+a?)r, +

a+al
.

> o2 (4.21)

Note that for —2<a <0 Eq. (4.21) represents quadratic interpolation between r _,.
Fp-p andrg,.

Following the procedure used in Section 4.2, we take the z transform of Eq.
(4.21) and let z = eJWh to obtain Ha (eJWh), the extrapolator transfer function
for sinusoidal input data sequences. Next we divide by ejaWh, the ideal extrapola—
tor transfer function Hg (jWw). In this way we abtain the following formula for the
ratio Hg/He:

He _ -jawn|[2#3a+a% 0 oyo-jwh 22 2w (4.22)
H e 2) 2
4-7

Using power series expansions for the exponential functions in Eg. (4.22) and retaining
terms to order h4, we obtain the following approximate expression for the fractional

error in extrapolator transfer function: C
Ha a(2 +5a+4a2+ a3 a(2 +3a+a?
ﬁ_€~1 = (:)(wh)4+j (5)(wh)% Wh <<1

e

It follows that the asymptotic formulas for the fractional error in gain and the phase
error are given by

H*
:gﬁ:—1 = ey = §(2+Sa+4az+a3)(wh)4, Wh <<1 (4.23)

e
£HE —2He = e, = g(z +3a+a2)(wh)3, wh <<1 (4.24)

Here the phase error predominates for small Wh , varying as (W h)3; the fractional
gain error is proportional to (wh)4. For a = 0.5, Figures 4.1 and 4.2 show exact
plots of ey and e, versus W h in comparison with other extrapolation schemes.

4.5 Second—Order Extrapolation Basedon r, ., r.,.r,

Next we consider extrapolation based onr .r_, and l"n, If r,is a state vari— (
able in the simulation, then r is available. Here the extrapolation is based on a
quadratic which passes through r and r_; and matches the slope r, at t = nh. Thus
we obtain

fph—=Tp+ 0y

h2

falt) = ry + ot —nh) + (t = nh)? (4.25)

Letting t = nh +ah in Eq. (4.25), we obtain the following extrapolation formula:
Fma = (1 -a2)r, +a2r, +(@+a)hr, (4.26)

For —1<a<0 Eq. (4.26) represents quadratic interpolation betweenr and r .. To
obtain the fractional error in extrapolator transfer function we follow the same pro—
cedure used in Section 4.3 for the r . ':n extrapolator. Thus we take the z transform
of Eq. (4.26), rewrite it for a sinusoidal input data sequence, and then solve for the
extrapolator transfer function. In this way we obtain

Ha(elWhy =1 — a2 +32¢-jWh 4 j(a + a2)wh (4.27)

Dividing by the ideal extrapolator transfer function, Ho (jW) = ejawh e obtain
the following formula for the ratioHg /Hog:

Ha(eiWh)
He(jW)

Expanding the exponential functions in power series, we obtain the formula for the
the fractional error in extrapolator transfer function in series form. Thus .

= e-JaWh[1 — a2 + a2e-jWh 4 j(@ + a2)wh] (4.28)

Ha 2 2

—2 _1 = (1 +4a+3a2)(wh)*+ (0 +a)(wh)d 4+ -

Hae 24 6

It follows that the asymptotic formulas for the fractional error in gain and the phase
error are given by

He 2
IHel 2 ey = = (1+4a+3a2)(wh)4 wh<I (4.29)
IHel 24
» 32
<Hg—<He = eq = (1 +a)(wh)3, wh<1 (4.30)

Again the phase error predominates for small Wh, varying as (W h)3; the fractional
gain error is proportional to (Wh)#. For a = 0.5 Figures 4.1 and 4.2 show exact
plots of ey and e, versus Wh in comparison with other extrapolation schemes.

4.6. Second—Order Extrapolation Based on r . Fn, M -1

As in the previous section, this method is limited to cases where the deriva—
tives of the data points are available or can be computed. This will always be true if
r, is a state variable. In fact, for both predictor and predictor—corrector algorithms
';n and r'n_1will both be available in storage at the nth frame. Here the extrapolation
formula is based on a quadratic which passes through the point r and matches the
slopes r, and r,_,. The formula is given by

. , S
ra{t) =r, +r (t—nh) + --'-’—z—r-‘-—n—1('c—nh)2 (4.31)

Letting t = nh +ah in Eq. (4.31), we obtain the following extrapolation formula:

. 2 . .
eg = My +arph+ % (rp=rp)h (4.32)

For —1<a<0 Eg. (4.32) represents quadratic interpolation between t = (n—1)h and

4—9

Taking the z transform of Eq. (4.32) and rewriting it for a sinusoidal input data se—
guence, we can solve for the extrapolator transfer function. When this is then divided
by the ideal extrapolator transfer function, Ho (jw) = eJjaWh, we obtain the fol—
lowing formula for the ratioHg/Hg:

Ha(elWh)
He(jw)

Expanding the exponential functions in power series, we obtain the formula for the
the fractional error in extrapolator transfer function in series form. Thus

aZwh

= e JaWR[1 + jawh +j (1 —e-jwhy] (4.33)

2 2
—& 1 = 32(2 +6a+3a2)(Wh)4 + j ";‘—2(3 +23)(Wh)3 +- -

It follows that the asymptotic formulas for the fractional error in gain and the phase
error are given by

He 2
l—F"|—1 = ey = a—(2+6a +3a2)(wh)4 wWh< (4.34)
|Hel 24
2
LHE—ZHe = e, = 96—(3+2a)(wh)3, Wh << 1 (4.35)

As in the case of the previous two second—order extrapolation aigorithms, the phase
error predominates here for small Wh, varying as (W h)3; the fractional gain error
is proportional to (Wh)4 For a= 0.5, Figures 4.1 and 4.2 show exact plots of ey
and e, versus Wh in comparison with other extrapolation algorithms.

The error coefficient, e,/ (Wh)3 is shown in Figure 4.4 as a function of the
extrapolation interval -a for the three second—order algorithms considered here. It is
again evident that the algorithms are more accurate for interpolation (—1<a<0)
than for extrapolation (6<a< 1). The algorithm based on r,, r, , and fn is clearly
the most accurate, whereas the algorithm based on r\, r , and r_, is generally the
least accurate.

From the exact formula for HS in the case of r, r_,., r,; extrapolation it
can be shown that the gain |Hg| peaks at the frequency given by Wh =T for a > 0.
The corresponding peak gain is equal to 1+4a+2aZ For extrapolation based on rn-
Frq- Fn. 8 well as extrapolation based on rp.r..r, . the gain is less than this for
Wh = T, although it continues to increase for Wh> T . In the unlikely event that the
data sequence corresponding to r, has significant frequency components for which
Wh > 1, the second—order extrapolation algorithms considered here may amplify such
components appreciably.

./‘
s
i

1.0

(Wh)3 ne"ns Ma-
0.5

n- rn-1' rn-2

rn; r:na r:r\-1 /
0.0 é— e \

-1.0 -0.5 0.0 0.5 \ - 1.0

-0.5

Figure 4.4. Phase error coefficient, eA/(w h)3 versus dimensionless extrapolation
interval, a, for second—order extrapolation algorithms.

4.7. Third—Order Extrapolation Basedon r . r .r._,. ';n—1

Although there are a number of possible third—order extrapolation algorithms,
in this section we will consider only one, which is based on a cubic function that

passes through the data points r and r_,. and matches the siopes En and r'n_1. In

this case the formula for the extrapolated data point r . is given by

~

Fhea = (1 —3a%2—-2a3)r + (3a2+ 2ad)r _, +ah(1 +a)2r'n+ aZh(1 +a)r,
(4.36)

If r,, is a state variable in the simulation, then Fn and r'n_1 are available for the al—
gorithm. For —1<a<0, Eq. (4.36) represents Hermite interpolation.* Following the
same procedure used in Section 4.3 for r . I:n extrapolation, we can derive the dig—
ital transfer function for sinusoidal inputs, H3 (e WN), After dividing by the ideal
extrapolator transfer function, given by Ho(jw) = ej2Wh, we obtain the follow—
ing formula for the ratioHg /Hg:

He = e-JaWh[1 4 (3a2+2a3)e-jWh-1) yrjawh(l+a)(1 +a+ae-jWh)]

H
(4.37)

The asymptotic formula for the fractional error in extrapolator transfer function is

(0]

* $ee, forggxample, Z. Kopal, Mumerical Analysis, John Wiley and Sons, Inc., New
ork, 1981.

obtained by subtracting 1 from the right side of Eg. (4.37) and replacing the expo—
nential functions with power series. Retaining terms up to order hS, we obtain

a2(1+a)2(1+2a)

S « o
60 (Wh)™ +

2
= m = (wh)t 4

It follows that the asymptotic formulas for the fractional error in gain and the phase
error are given by

|Hal a(1+a)? 4
—_— 1 = x ———(Wwh) 7, Wwh <1 4.38
. a2(1+a)2(1 +2a) s

ZHg—<4He = ey = e (Wh)>, Wwh <« (4.39)

For this third—order extrapolation algorithm, the predominant error is the gain error,
which is proportional to (wh)4. Figures 4.1 and 4.2 show exact plots of ey and e,
versus Wh in comparison with the ather extrapolation algorithms considered in this
chapter. Figure 4.4.5 shows a plot of the error coefficient e/ (W h)}* as a function
of the dimensionless extrapolation interval a. In the case of this third—order algo—
rithm the difference between the interpolation errors (—1<a<0) and the extrapo—

0.1
~1.0 —0.5 0.0 s 0.5 1.0
0.0
ey ‘ \
(wh)*
—-0.1
-0.2

Figure 4.5. Gain error coefficient, ey /(wh)f versus dimensionless extrapolation
interval, a, for third—order algorithm.

4—12

polation errors (0 <a<1) is very substantial. Thus the peak magnitude of gain error
coefficient for interpolation in Figure 4.5, occurring at a = —0.5, is equal to 1/384.
By comparison, the peak magnitude of gain error coefficient for extrapolation, which
occurs at a=1, is equal to 1/6.

From the exact formula for Ha the transfer function gain |Hgal| can be deter—
mined for the case where the input frequency Wh is not small compared with unity.
For a=1 and Wh >1, the gain increases rapidly with increasing wh, e.g., the gain
equals 10.976 for Wh =Tr. Since the gain for a<1 is roughly a function of a2 it
will be considerably less for smaller prediction intervais a. In the unlikely event that
the data sequence corresponding to r, has significant frequency components for which

Wh >1, the second—order extrapolation algorithms considered here may amplify such
components appreciably.

4.8. Summary Tables of Extrapolation Formulas

The extrapolation formulas developed in Sections 4.2 through 4.7 are summa—
rized in Table 4.1. Table 4.2 presents the asymptotic formulas for gain and phase er—
rors of the corresponding extrapolator transfer functions.

Table 4.1

Summary of Extrapolator Formulas

':ma = r(nh +ah) , where ah = extrapolation interval

Extrapolator Inputs Extrapolator Formula for r nea
oo M pet ro+alrp—rpoy)
"n-Tn ro+tahrg
. 2+3a+a? — (2a+2a2) a+a?
n- "n-1-Mn-2 —1r, a+ad)ro, + F o
2 2
- To1-Tn (1 —a2)r, +a%r, +(@a+a2)hr,
..) a2 . .
Fn-"n- "ot rptargh+ > (ry—rph
- - —332—-233
"ne"n-1-"n- Mn-y (1 -3a4-2a%)r, + (3a2+2ad)r_, +

ah(1 +a)2r'n+azh(1 +a)r'n_1

4-13

Table 4.2

Summary of Extrapolator Transfer Function Gain and Phase Errors

Note: all formulas are approximate based on Wh<<1.

Extrapolator Inputs Fractional Gain Error, ey Phase Error, e 4
a{l+a a(1+3a+2a?
"n- -1 ()(wh)z - ()(Wh)S
2 6
Fo-"n — (Wh) - — (Wh)
2 3
QR P g ';'(2+5a+4a2+a3)(wh)4 —2(2+3a+a2)(wh)3
: a? 2 4 a? 3
Fas Tne1-Tn -2—4(1+4a+3a Y(wh) —6—(1+a)(wh)
.. a2 4 32 3
- Tre ' ned 2—4(2+6a +3a2)(wh) _6-(3 +2a)(wh)
. 2(1 4 3)2 2(1 +2)2(1 +2a)
ac(1+a a<(1+a +2a
Foo Crets Fre Foet - (wh)* (Wh)>

24 60

4.9. Extrapolation and Interpolation for Multiple Frame Rates

Consider digital simulation of a dynamic system where the integration step size
is T. Assume that a fast subsystem within the simulation uses an integration frame—
rate which is N time the basic frame—rate 1/T. so that the step size. h, for the fast
subsystem is T/N. Let {rn} be a data sequence with sample period T which serves as
an input to the fast subsystem, and assume that the fast—subsystem integration al—
gorithm requires inputs . - Mneae - - Dnen-1)/n OVEr each sample period T.
The only way these data sequence values can be calculated from rp rp 4. 0o . -
is through extrapolation. If r is a state variable, then r,, r_,, ..., are also avail—
able for extrapolation. If r, is a state variabie and r is integrated during the nth
frame to obtain r,, before the fast subsystem integration is mechanized, then r .,
is available as well asr, r 4. ...r In this case interpolation can be used to
compute M . M peine M near- = -

In Sections 4.2 through 4.7 we developed a number extrapolation formulas that
are summarized in Table 4.1. We also developed asymptotic formulas for the ex—

4—14

g

trapolator transfer function gain and phase errors. These are summarized in Table
4.2. Here we will take advantage of these formulas in analyzing methods for provid—
ing extrapolated or interpolated inputs for multiple frame—rate digital simulations.

Figure 4.6 shows the extrapolation (or interpolation) process. The data sequence
{rn} with a sample period T is generated by the slow simulation using an integration
step size equal to T. The extrapolator, by means of the appropriate difference equa—
tion, generates from {r,} (and possibly {::n}) a data sequence {f,} Wwhich has a
sample period h=T/N,N= 2, 3, 4, Then {fk} becomes the input to the fast—
subsystem simulation, where h = T/N is the integration step size.

Data Sequence Extrapolator Data
from Slow System, Sequence, Sample
Sample Period =T Extrapolator Period = h = T/N Fast SUbSYStem'

>] Integration Step jr———fp»
{ro} (Interpolator) {f} Size = h = T/N

Figure 4.6. Extrapolator (or interpolator) for generating multiple frame—rate input
to fast subsystem simulation.

For example, if N =4 and we use first—order extrapolation, then we need to
compute estimates for r /4. . @M Mg from e and r . These estimates,
along with r ., constitute 4 data points in the {f, } data sequence with sample peri—
od h = T/4. In Eq. (4.2) for first—order extrapolation based on rnpand r_,. we let
a = 1/4, 1/2, and 3/4, which leads to the following equations for the fast data se—
quence {f, }:

fe = rn ., k=4n
1
fen = rn+Z(rn_rn-1)

2
fla=T"nt73 (rn—=rn-1)

3
fes= Tn+ 3 (rn=rny) (4.40)
fk+4 = rn+1
]
fres = Tney + 2 (rnﬂ —rp)

2
free= e + 37 (rpe1=rn)

4—15

Let us now write the formulas for the fast data sequence points for the general
case where the frame multiple is N and r,, designates the extrapolated data point
with extrapolation interval aT. Then the equations become

-~

fk = I ., k= Nn
fer = Tnen
fsa = Tnen
- (4.41)
fk,nq = -1/
e = Tnetso
_ fane1 = THeteIN
It follows that
feem= ek » M= 0.1,2, N—1 (4.42)
We next consider a sinusoudal input data sequence from the slow system. Thus
we let .
ro = eJWnT (4.43)

The extrapolator response ':n+a to the sinusoidal input r in Eg. (4.43) is simply

I:n'ra = Hea eJwnT (4.44)

where Hag represents the extrapolator transfer function for sinusocidal inputs for the
extrapolation interval a. Here we have designated this transfer function Hg, rather
than simply Hg in order to indicate its dependence on the dimensionless extrapola—
tion interval a. Substituting Eg. (4.44) into Eg. (4.42). we obtain

fo,o= HoedWNT m=1012 . N-1 (4.45)

We note that

. j W
A WT _ jw ()T, —jwar _ 19T

Hea(Jw)

Here Ho,(jW) = eJ3WT s the ideal transfer function for the extrapolation inter—
val a, first introduced as Hg (jw) in Eq. (4.6). but now designated as Hg, to indi—

(4.46)

4-16

cate its dependence on the dimensionless extrapolation interval a. Replacing T by Nh,
nby k/N, and a by m/N inEq. (4.46), we see that (n+a)T = (k+m)h. When Eq.
(3.46) is then substituted into Eq. (4.45), we obtain

H e ojw (k+m)h

f e

on= 5 m = 0,12, ... N=1 (4.47)

em/N

For all integer values k> 0 let us rewrite Eq. (4.47) as

fo=HeelWkh =123, . (4.48)
where
* H;ITVN
Hi = . m=0,12, ... N—1, k=m, N+m, 2N+m, ... (4.49)
H emn

It is clear that e)WKN Eq. (4.48) is simply a sinusoidal data sequence with
sample period h, the integration step size for the fast subsystem. H; is equal to the
ratio of H;m/ﬂ' the extrapolator transfer function, to Hgn . the ideal extrapolator
transfer function; for both transfer functions the dimensionless extrapolation interval
is m/N. We have already derived formulas for this ratio in Sections 4.2 through 4.8
for a number of different extrapolation algorithms. From Ea. (4.49) we see that H|:
represents a periodic data sequence with period Nh, i.e., H;*N = H,’('. This means that
we can represent Hy by means of a discrete Fourier series.* Thus we let

N-1 N-1
Hi =2 CqelWokah = 5 ¢ el2TakN (4.50)
g=0 q=0’

Here HE is given by the sum of N sinusoidal data sequences of frequency 0, W,, 2W,.
s (N—1)w0, where W, = 2T/T =2T/Nh, the frequency in radians per second
of the fundamental component of the Fourier series.
~_To obtain the Fourier coefficients Cq. we multiply both sides of Eq. (4.50) by
e TJ2TTPK/N 3nd sum from k=10 to k = N—1. Thus
N-1 N-1 N-1
> HIeTi2TRkN _ 5 5~ qu}ZTT(q—p)k/N (4.51)
k=0 k=0 g=0

Interchanging the order of summation on the right side of Eq. (4.51). we obtain

=A V. Oppenheim and R.V. Schafer, Drgita Signa/ Frocessing Prentiss—Hall, Engle—
wood Cliffs, New Jersey, 1975.

4-17

N-1 N-1 N-

S Hre—i2TpkMN - ZC ZEJZW(Q p) k/N (4.52)
k=0 g=0 k=0

The exponential function ej 27T (q—p) k/N is @ complex number which can be repre—
sented as a unit vector in the complex plane. The polar angle of the unit vector is
equal to 2T (q—p)k/N. where both p and q are integers ranging between 0 and N—1.
As k is indexed from 0 to N—1 it is easy to show that the sum of the resulting N
unit vectors will add to zero except when q = p. in which case the sum is N. Figure
4.7 shows several specific cases for illustrative purposes. It follows that

N-1

q—p =1, N=3 ZEJZTTk/Ci: }—0 =0
k=0

N-1

ZEJZTI'k/4 ?

4+ —>

k=0 '

-1
qg—p =2, N=4 Zejznk/2=3> =% =10
k=0 '

I
o

N-1
Figure 4.7. Example vector representations of Z el 2T (a-—p) k/N
k=0
N-1 .
k=0 (4.53)
=0.qg=#p o

Therefore, the double summation on the right side of Eq. (4.52) reduces simply to
C qN and the formula for the Fourier coefficients becomes
N-1

Cq= =~ ZOH ce d2TakN g =012 . N-1 (4.54)
k

In particular, Cg, the discrete Fourier series coefficient for the zero—frequency
component of Hy . is given by

Z

-1

Hy (4.55)

=1
Cq =
N

=

£
i

Thus C g is simply the average of the N extrapolator transfer function ratiosHa, H {
s H,Ij_1 corresponijing, respectively, to the N extrapolation intervals 0, h, 2h, ...,
(N—=1)h.

Substituting the discrete Fourier series representation for H|: ., as given in Eg.
(4.50), into Eq. (4.48), we have

N-1
f, = Zcqel(q‘”o*f‘”)kh (4.56)
q=0

This is the representation of the kth data point from the extrapolator output data
sequence with sample period h. The extrapolator input is the sinusoidal data sequence
given in Eq. (4.43) with sample period T (= Nh). The right side of Eg. (4.56) consists
of N sinusoidal data sequences of frequency W, W, ,+W, 6 2W+W, 3W+W, ...,
(N—=1)W,+w, where W= 2T /T, the slow data—sequence sample frequency. When
we let the input frequency take on negative as well as positive values, as required in
the exponential representation of sinusoids, then the frequencies contained in f, be—
come * W, W,*w, 2w xw, ..., (N-1)wy*w. However, the amplitude Cgq
of the frequencies qW, + w, where g = 1.2, ..., N—1, is normally small compared
with the amplitude C g corresponding to the original input frequency W. To show this
we let

He =1+ ey + jeax (4.57)

where 1+ ey, and e,, represent, respectively, the real and imaginary parts of the
extrapolator transfer function ratio Hy. For leyk +ieayl <1 we have shown in
Egs. (1.41) and (1.42) that ey, is approximately equal to the fractional error in gain
of the transfer function and that e, is approximately equal to the phase error of the
transfer function. In Sections 4.2 through 4.8 we have derived exact and appriximate
formulas for ey, and e, for a number of extrapolator algorithms, as summarized
in Tables 4.1 and 4.2. In accordance with Eg. (4.49), k merely designates the appro—
priate dimensionless extrapolation interval a. Thus

a =10 for k =0, N, 2N, 3N, . ..
a = 1/N for k =1, N+1, 2N+1, 3N=1,
a =

2/N for k = 2, N+2, 2N+2, 3N=2, . ..

a = (N=1)/N for k =N—1, 2N—1, 3N-1, . ..

4-19

Substituting Eq. (4.57) into Eq. (4.54). we obtain the following formula for the
coefficients C 4 in the discrete Fourier series representation of He -

N-1
1) .
Cq = Ng(wenkﬂe,\k)e j2mqk/N (4.58)

From Eq. (4.53) we see that this can be rewritten as

1 .
k=0
and

Cq-= éz (eyy +iege) e J2TMakN g =12, ., N=1 (4.60)
k=0

Thus the amplitudes C 4 of the harmonic frequencies qW, + W present in the ex—
trapolated fast data sequence are indeed small for small ey, and e, . The coeffi—

cient Cg in Eq. (4.59) simply represents the effective extrapolator transfer function
for the slow input data sequence of frequency W. It follows that

€Me = Extrapolator fractional gain error = é Z eMK (4.61)
and
1 N-1
Cpe = Extrapolator phase error = N : oeAk , Wh<< 1 (4.62)

As a specific example, consider the case of first—order extrapolation based on r, and
Fp-1- Letting a = k/N in Egs. (4.9) and (4.10), we obtain the following formulas for
ey and epy

e = k/N (1 +NXWh)2, Whe< T (4.63)
epr = ng[1+3k/N+2(k/N)2](wh)2 Wh<< T (4.64)

The formulas for €Me and €pa- the extrapaolator gain and phase errors, respectively,
are obtained by substituting Egs. (4.63) and (4.64) into Egs. (4.61) and (4.62). The
actual errors depend on the frame—rate multiple N. For N — @ the summations in
Egs. (4.61) and (4.62) are replaced by the following integrals:

4-20

C

1 1 .
€y = fen(a)da, €pe = [eA(a)da (4.85)
0 0

Table 4.3 summarizes the multiple—frame extrapolator gain and phase errors
for all of the extrapolator algorithms considered in this chapter. The tabie shows nu—
merical values for the error coefficients when the frame mulitiple N = 2,3,4.5 and 6,
as well as the asymptotic result for N = % . Note that the case of zero—order ex—
trapolation is also included in the table. This is in effect equivalent to no extrapola—
tion at all; i.e., the fast frame—rate system simply uses the same input r, from the
slow system for each of the N fast system frames untilr ... the next input from the
slow system, is available. In this case the extrapolation algorithm is given by

r(nT +aT) = ';n+a =r (4.66)

n

and the extrapolator transfer function Hg(ej'wT) = 1. After division by the ideal
extrapolator transfer function, He (jW) = eJWaT, and subtracting 1, we obtain the
following expression for the fractional error of the zero—orde extrapolator:

Ha(elWT)

. 2
' — 1 =e-—JwaT_1g_a_(wT)Z_ja(wT), wT<<1
He (jw) | 2

(4.67)

It follows that the formulas for the fractional error in gain and the phase errorare
given approximately by

1N

2
ey —92—(wT)2, e, = —a(WT)., WTCT (4.68)

These formulas are used in Egs. (4.61) and (4.62) with a = k/N to compute the frac—
tional gain error, ey,. and the phase error, e,,, for zero—order extrapolation.

Next we consider the dynamic errors in generating the multiple frame—rate
data sequence using interpolation instead of extraploation. We recall that the formu—
las for interpolation can be obtained from the formulas for extrapolation by simply
replacing a with a—1 and n with n+1. When this is done, the results shown in
Table 4.4 are obtained for the gain and phase errors of the multiple frame—rate in—
terpolators. Again we have shown the data for different frame—rate multiples N, and
the case of zero—order extrapolation has been included.

Comparison of the error coefficients in Tables 4.3 and 4.4 shows that the er—
rors are generally much smaller when using interpolation rather than extrapolation.
fn particular, note that interpolation based on r r, and interpolation based on

n+1s ' n
Mme1- Thei- Tn- Ty N each case exhibit zero phase error. This is true because of the

4-21

Table 4.3

Summary of Multiple—Frame Extrapolator Gain and Phase Errors

Note: N = frame multiple. All formulas are approximate based on Wh<<1.

Extrapolator Inputs

ro (zero—order)

"o M-t

n- n

r r

ne r

n-1" n-2

"n-Tn-1Tn
r - r

ne'n-1-"n. ey

Extrapolator Inputs

ro (zero—order)

n- ' n-i
n-. ' n
n- ' n-1' n-2

ne- rn«1'rn

n-n-1-"n-Mn-y

—-.0625
1875
.0625

1758
0195
—-.gnz

—.1250
—.0208
.1563
.0313

.0094

Gain Error Coefficient, eMe/(wh)2

N=3

—.0926
.2593
.0926

.2634
.0350
—.0199

N=4 N=5
~.1094 —.1200
2969 .3200
1094 .1200
ey /(Wh)?
3127 .3442
0445 0508
—.0248 —.0281

N=56

—.1273
.3356
1273

.3569
.0553
—.0303

Phase Error Coefficient, ey o/(Wh)

—.1852
—.0370
2222
.0494

N=4 N=5
—.3750 —.4000
epo/(wh)?
~2188 —.2400
—.0469 —.0533

.25178 .2800
.0599 0667
eAe/(wh)5
.0232 .0268

—.2546
—.0579
.2951
0714

0285

—.1667
4167
.1667

.4833
.0806
—.0431

—.3333
—.0833
3750
0972

.0444

Table 4.4

Summary of Multiple—Frame Interpolator Gain and Phase Errors

Note: N = frame multiple. All formulas are approximate based on Wh << 1.

Extrapolator Inputs

r, (zero—order)

r

"nete Tn

net- Tne Tpey

r.r

r ns'n

n+t-

rn+1' rn'rnﬂ' rn

Extrapolator Inputs

r, (zero—order)

"nete FneTneie T

Gain Error Coefficient, eMe/(wh)2

N=2 N=3 N=4 N=5§ N==56 N=o

—.0625 -—.0926 -—.1094 -—.1200 -—-.1273 —.1667
-.0625 -—-.0741 -—-.0781 -—.0800 -—.0810 —.0833

eHe/(wh)4

—.01172 —.01440 -—.01538 —.01584 -—.01609 -—.01667
—.00130 —.00206 —.00236 -.00251 -—.00259 -—.00278
—.00130 -.00137 -—.00138 —.00139 —.00139 —.00139

Phase Error Coefficient, ey o/(Wh)

—.2500 —.3333 -—.3750 —.4000 -—.4167 -—.5000

eqe/(Wh)3
0 0 0 0 0 0
—.0313 -.0370 -—.0391 —.0400 —.0405 —.0417
-.0104 -.0123 -.0130 —.0133 —.0135 —.0139
ea e/(b\) h)5

0 0 0 0 0 0

symmetry of the algorithms. Both algorithms, to be sure, require r,, for interpo—
lation over the nth frame. In a dynamic simulation where r is a state variable, r.,
can in fact be made available for interpolation if the numerical integration of r to
obtain r ., is executed prior to executing the multiple—frame integration algorithm.

Figure 4.7 shown an example of the generation of a fast data sequence from a
slow data sequence. In this example N = 4, i.e., 4 data points must be computed for
the fast data sequence per data point of the slow data sequence. F igure 4.7a uses
extrapolation based on r, and r_, whereas Figure 4.7b uses interpolation based on r,

and r,.. The superiority of interpolation is quite evident.

o -
DU Ogop

] I i | 1 | ! | i i

kh (ke@)h (k+B)h (K+12)h (k+16)h (k+20)h (k+24)h (k+28)h (k+32)h (k+36)h
AT (DT ()T (3T (ned)T (neS)T (n+6)T (neDDT (n+8)T (n+Q)T

a). Fast data sequence generated by first—order extrapolation.

t 3
S0paooo

| i | | | | | | i]
kh (k+d)h (k+8)h (k+12)h (k+16)h (k+20)h (k+24)h (k+28)h (k+32)h (k+36)h
nT (n+ DT (e2)T (n+3)T (n+ed)T (n+S)T (0+6)T (n+)T (n+B)T (n+9)T

b). Fast data sequence generated by first—order interpolation.

Figure 4.7. Generation of a fast data sequence from a slow data sequence. N = 4,

N

CHAPTER 5

DYNAMICS OF DIGITAL—TO—ANALOG AND ANALOG—TO-DIGITAL
CONVERSION

5.1 Introduction

Real—time digital simulation often invoives inputs and/or outputs in the form of
analog (i.e., continuous) signals. Clearly this is true for the “hardware—in—the—loop"
simulation shown in Figure 5.1, where the hardware requires continuous inputs and
produces continuous outputs. In this case the continous outputs from the hardware must
be converted to digital data sequences using A to D (analog—to—digital) converters, a
single channel of which is shown in the figure. The computer outputs in the form of
digital data sequences must be converted to continuous signals using D to A (digital—
to—analog) converters. Again, a single channel is shown in Figure 5.1. For both
A—to—D and D—to—A converters we have assumed that the sample period h is fixed,
which is almost invariably the case in real—time, hardware—in—the—Iloop simulation.

0 h 2h3h4h 5h 0 h 2h 3h 4h 5h
time —e time —e
DIGITAL ')
AtoD > SIMULATION 1 DtoA
< HARDWARE <

Figure 5.1. Hardware—in—the—loop simulation.

In this chapter we will examine the dynamics of the A—to—D and D—to—A
conversion process. As in the previous chapters we will find this most convenient and
meaningful in the frequency domain. In the next section we will consider digital—to—
analog conversion using both zero and first—order extrapolation. The resulting DAC
(digital —to—analog) characteristics will be examined in the frequency domain by de—
riving the DAC transfer function for sinusoidal input data sequences. This will lead in
subsequent sections to the development of digital algorithms to compensate for the
DAC transfer function gain and phase errors. The spectral characteristics of A—to—D
converters will be examined in the last section of the chapter.

5.2 Definition of Zero and First—Order DAC Extrapolation

Assume that the digital computer produces a data sequence {rn} which is
converted to a continuous signal using a double—buffered DAC. The DAC data word r,
is loaded into the outer buffer register prior to timenh, where h is the fixed time
between data points. At t = nh, the data word r, is transferred to the inner buffer
register so that the DAC output becomes the equivalent of r,. Every h seconds this
_process is repeated,. which results in the staircase function shown in Figure 5.2._The_

ne4
r n+3
! r
ne2
re(t)
Mnet
Fot
Tt —»
nh (n+1) h (n+2) h (n+3) h (n+4) h

Figure 5.2. Zero—order DAC extrapolation.

9—2

DAC output re(t) in this case represents a zero—order extrapolation from the input
data sequence {rn }. This is the most common method of mechanizing DAC outputs in
real—time digital simulation.

An alternative is to use first—order extrapolation, which is itlustrated in Fig—
ure 5.3. Here the DAC is used in combination with an analog integrator and storage
device to produce a linearly varying output with slope based on the current (rn) and
previous (r,_,) data points.

t —»

L] i L

ah (v)h (e2Dh (#3)h (nea)h

Figure 5.3 First—order DAC extrapolation.

5.3 Transfer Function for Zero—OQOrder Extrapolating DAC

We will obtain the transfer function for the DAC which uses zero—order ex—
trapolation by taking the Fourier transform of the DAC output.r (t). First we define

the unit data point response of the DAC, i.e.. the response to the input

rn=1, n=10

(5.1)

=0, n#0

5-3

We define the corresponding DAC response as hg (). which is shown in Figure 5.4 in
the case of zero—order extrapolation. From the figure it is apparent that

he(t) = 0. t£0

=1, 0<t<&h (5.2)
=0, t>h '

Then the DAC output r,(t) for any input data sequence can be represented as

ra(t) =) ryhe(t—nh) (5.3)
n=1

We now derive the frequency domain representation for the DAC output by taking the

he(t)

t —»
! L |

0 h Z2h 3h 4h

Figure 5.4. Unit data point response of zero—order DAC extrapolator

Fourier transform of r(t). Thus

o ® ©
Re(jw) = fre(t) p-iWtyr — f Zrnhe(t—nh)e'jwtdt

-® -® p=1

or, interchanging the order of integration and summation,
Q ©
RL(jW) = 2 rnfmhe(t—nh)eﬂ“’tdt (5.4)
n=1 -

5—4

Here _fm he (t—nh) e JWtdt is the Fourier transform of hg (t—nh). We recall the
translation theorem of the Laplace transform, which states that

L[Ht—ty)] = e Sta 2[H(1)]
The equivalent theorem for the Fourier transform states that
Flhe(t—nh)] = e d¥Wnh #[h, (1)

Thus we can rewrite Eq. (5.4) as

@ D
R (jW) = 2 rpe iWnh [h (e iWtgt
n=1 ®

or
Ro(iW) = 2_ry@3¥N) M He(jw) (5.5)
n=1
where
He(jW) = _fmhe(t)e-iwtdt (5.6)

We also recall that the z transform of the data sequence {rn} is defined as
@D
R*(z) = Z rnz "
n=1

Hence we can write Eq. (5.5) as
R (jW) = He(jw)Rx(eJ¥M) _ (5.7)

It follows that Hg (jW) is the transfer function of the zero—order DAC extrapolator
for a sinusoidal data sequence input. We can determine the formula for Hg (jW) by
substituting Eq. (5.2) into Eq. (5.6). Thus
h h -jwh
- 1 - 1—e™
He(jW) = Je dWldt = —— e'J“’t] = —— (5.8)
° 6{ jw 0 jw

An alternative expression for Hg (jW) is obtained as foliows:

e iWh/2 [y jwh/z _ e-jwh/Z} _ hsin(wh/2)

Ho(iW) = ,
e(JW) W /2 i2 (Wh/2)

p-JWh/2 (5.9)

Figure 5.5 shows plots of the magnitude (gain) and phase angle of Hg(jW) versus
dimensionless frequency Wh over therange 0SWh<2T. Here Wh = 2T cor—
responds to W = 2T /h, the data sequence sample frequency in radians per second.
In Figure 5.5 the gain is normalized by plotting |Hg (jW)[/h. which from Eg. (5.9)
is given by sin(w h/2)/(w h/2). The phase angle is given by — W h/2. The resulting
linear phase shift with frequency is apparent in Figure 5.5. This phase characteristic
is equivalent to a pure time delay of h/2 seconds, which is also intuitively obvious in
Figure 5.2 when one compares a smoothed curve through the staircase function with
the data sequence driving the DAC.

If we make a power series expansion of the zero—order extrapolator transfer
function in Eq. (5.8), the following formula is obtained:

Ho(GW) _

1 2
1—={(Wh
h 6()<+

—— (W —=wWh+—({(Wh .
pWmT | m g whag (Wh)T |
Ideally, the DAC extrapolator transfer function should be 1, i.e., input sinusoidal data
sequences to the DAC should produce output sinusoids having the same amplitude and
phase angle. Thus the fractional error in DAC transfer function is given by

Ho(iWw
__e_(hJ__2_1 e (5.11)
where from Eg. (5.11)
1 2 1 4 1 1 3
= — L (wh)24+—(wh v, ep=——Wh+—(Wh 5.12
e g (wh) +og(Wh)T 4 ey 5 +55 (Wh) ™+ (5.12)

In Egs. (1.42) and (1.43) of Chapter 1 we have shown that for Wh<<1, ey isap—
proximately equal to the fractional error in DAC transfer function gain, . and e, is
approximately equal to the DAC transfer function phase error. Ea. (5.12) will form

the basis for the zero—order extrapolator compensation algorithms which will be de—
veloped in Section 5.5.

5.4 Transfer Function for First—Order Extrapolating DAC

The unit data point response for the first—order DAC extrapolator illustrated
in Figure 5.3 is shown in Figure 5.6. It is given by

he() =0, t£0; he(® =1+th , 0<t<h;

(5.13)
he() = 1—=t/h , h<t<2n; h () =0, t>2h

5—6

v “ » "
]] “ m u n m “
- fencsecsnalfasyoncansrmecenmnnns Anmese enw
‘ m m m m m m m o nu.m ”v m m ----- .m- m
. H ’ [, A maenmen meses { : : ;
...... .m.......m.......w......m... l“ J" : : o o m o m m “ m
’] + ’ » [’ 4 : O : : :
. ’ M4 ’ . . . ! : S : : u ;
. ’ “ . * » " ! : " : . : "
“ m “ . . : “ : ; . © M 4 ' . '
H I ' H : : : : : L : u : “
T I S : : - ; n : " .
1 T T A ° o A TN A8 L 1 N
¢ O . H H ’ . H L nns s fereeaaennd eee Aresies : " ’ ;
...... ‘. W...!..:..,.:..-.3...:w:.....l.::.,.. 4N 5 5 AR : m : “
gl) Pow : : : ;
H []
P b b8 A 4 AN : m m "
1] H : ;
LA A - ; : - ; m " |
. | " H 11 u . . ' : o " “ “ 5
8 “ " : " : " © = © e P N eennnns R, N $rveseenss gesesses
P o : H . : : H e 3 [IS besee | : P :
...... §- =0T EORIIN SUREINS RSOV SEERI SRS A B ; < < LN : L “
L “ ; : " ; N B : P :
L B “ . : : .) PN : o :
H [72]] H H . ' ' S : : " © ; u
P : ; “ : : : < ' H (] H Q. . .
RNy G /i & : ; : P& :
i “ " : : " g o : : LA, W beee b eeelenonanensd feeeesnence
: “ “ “ : : : S T bt f eoennne iofeefonadnns bove b5 ond :
H i [IR S A Pdevenren dreseesdinccced . T ™ : : ? " o : :
llllll dosvesnw lOt..\-ltltll-ﬂlllc ‘ “ : 3 r : “] e “ "
" . ’ “ “ + " L= “ / : “ .
: “ | . " “ ; a : : N % :
: . : : i g i " & : ' : NG :
M 14 H . 13 1 M . L4 . - ’ M
¢ ' ' ' ¢ Q. ' P ’ ' H I ~ 1 H
“ 1] 14 “ [t L] “ m “ : : " 0 : :
: “ | . P g : : : : : : :
: . . : i g i : o £ o : : Heeennees heee | evedeerannanes .
: " : : : . 8. : . . ‘© f Sesfforane dessnsesnes 2o :) : :
! - R S L N - o et DRSS IDUT ™ : n : Lt “
[: : : : : ‘ ¢ QL . I3 N | . ’ ’
N | Poobg : “ : P :
“ . “ : X “ £ : : : Pow :
H ' H H H ' : — : “ : “ : n
PN N 9 o ; “ ; " “ .
’ " 1] [“ M H g ; “ : : “
u . " : ; ﬂ « : e : ; P : ceneracssavens | G
: H H H T H o e becfenefon [Jesecesnnas Fooessnene posees : :
: . .“'. llllllll aWeeeew e e m e . H ' : : : -
messew ‘“ """" l“'l‘ "‘"' ‘" l" M m m — — m m “ m m m
: H : T : : : : “ : :
¢ 4 1 . . Q “ H : " : . u .
Ld 14 H H ! : . ;
' [H . ¢ b H H H : : . : |
: “ : : PN : 4 . 1 H ’ H
. “ “ . r N u 4 " “ “ . " “
: £ i : : . o : " : " : .
H [* . : H
H H u . . " ') = L = -
H n . . . S s po = S 4 =
mu + N © o © ¢ «~ oo o 2 B 8 3 S g 5
= . - N c o o o o _ ;
~— - At - - n)
Q= @
b7 @
: 225
] 5 5
© a m g

Figure 5.5. Frequency response of zero and first—order DAC extrapolators.

he (1)

t —»

-1+

Figure 5.6. Unit data point response of first—order DAC extrapolator.

If we take the Fourier transform of Eq. (5.13) using Eq. (5.6), we obtain the follow—
ing formula for the first—order extrapolator transfer function:

i 2
He(jw) = h2(1 +jwh)[ﬂ(.£”_“/_2_)}

s e-JWh (5.14)

Plots of the nomalized gain, |He(jWw)|/ hZ, and the phase angle of He(jW) are
shown as a function of dimensionless frequency W h in Figure 5.5. Note that the gain
exhibits a peak of approximately 1.6 at about one—third the sample frequency. By
comparison, the transfer function gain for the zero—order extrapolator has no peak—
ing. Also, at low frequencies the phase lag for the first—order extrapotator is quite
small compared to the phase lag of the zero—order extrapolator: however, at higher
frequencies the first—order extrapolator exhibits a larger lag.

If we make a power series expansion of the first—order extrapolator transfer
function in Eg. (5.14), the following formula is obtained:

He(jW)

5 > 59 4 . 1 3
= = —_ - — 1
2 1+12(wh) 360(uuh) + +J[3(wh) +] (5.15)

The real and imaginary parts of the fractional error in transfer functionof the first—
order extrapolating DAC are then given, respectively, by

5 59 1
e = S(wh)Z— = (Wh)+ . ey = — 3 (wh)3+- (5.16)

5—8

Comparison with Eq. (5.12) for the zero—order extrapolating DAC shows that
for Wh<<1 the gain error magnitude is 2.5 times larger when using first—order ex—
trapolation, since e represents approximately the fractional error in gain. For both
schemes the gain varies as hZ. Since e, represents approximately the phase error,
comparison of Egs. (5.12) and (5.16) shows that for Wh<<1 the phase error is much
larger in the case of the zero—order extrapolating DAC. Specifically, the phase error
in this case is proportional to the first power of the sample period h and, as pointed

out in the previous section, will be the dominant cause of dynamic errors when using
zero—order extrapolating DAC's.

5.5 Digital Compensation of Zero—Order Extrapolating DAC's

In this section we consider means for compensating the dynamic errors pro—
duced by zero—order extrapolation. Figure 5.7a shows a block diagram of the zero—
order DAC extrapolation process with the digital input and continuous (anaiog) output
represented in the time domain. [n Figure 5.7b the input and output are represented
in the frequency domain, with the output equal to the DAC transfer function times
the input, in accordance with Eq. (5.7). Ideally we would like the DAC transfer func—
tion to be unity. The fractional deviation of the DAC transfer function from unity is
represented by e, as defined in Eq. (5.11).

Zero—order Canti
extrapolator ontinuous
Data (analog)
sequence DAC | output
{rn} re(t)

a) Time—domain representation

Zero—order Conti
extrapolator ontinuous
Data (analog)
sequence . output
'w—h. He(jW) -
Re(eiWh) Re(jW) = He(jW)R=(eI¥WM)

b) Frequency—domain representation

Figure 5.7. Uncompensated DAC

-9

To reduce the DAC transfer function errors, we consider the addition of digital
compensation of the DAC inputs. Figure 5.8a shows the time—domain representation.
The data sequence {r } from the digital simulation is converted to a modified data
sequence {r } using the compensation algorithm. Then {r } becomes the input to the
zero—order DAC extrapolator. Figure 5.8b shows the frequency—domain represen—
tation, where H;(ej“’h) is the compensator transfer function. In Figure 5.8b we

Digital Zero—order

compensator Modified extrapolator Continuous

Data data (analog)
sequence seq?ence DAC output

{r,} {r|n } LN (1)

a) Time—domain representation
Diqital Zero—order Conti
compensator Modified extrapolator ~Continuous
Data data (analog)
seqUénce H 5(piwh) hsequ.ence He(jW) output ‘ |
R*(edWh) R*(eIWh) Re(jW)=Hg(jWw)R*(eIWh)

= He(jw)Hg(ejwh)R*(ejwh)

b) Frequency—domain representation

Figure 9.7. DAC with digital compensation.

see that the Fourier transform, R, (jW). of the DAC output is given by
Re(jW) = He(jw)HZ(eIWMR=(eIW) (5.17)

In Eq. (5.11) we represented the DAC transfer function in the form

He(jW)

If we choose the digital compensation algorithm such that the compensator transfer
function is given by

Ho(ed¥WN) =1 - ey : (5.19)

5—-10

then the combined compensator—DAC transfer function will be

Ho(iW)H2(edWh)
e(J)h° =1-e? (5.20)

The fractional error in the combined transfer function relating the continuous output
re(t) to the input data sequence {r,} will now be — eﬁ. This will result in signifi—
cant accuracy improvement when IeHI <{<1. Note that Figures 5.7 and 5.8, as well as
Egs. (5.17). (5.19), and (5.20) apply in general, regardless of the type of DAC ex—
trapolation. We now consider some specific examples.

5.5.1 DAC Compensation Using r,.r,,

We have seen in Eq. (5.12) that the transfer function error ey for the zero—
order DAC extrapolator is equal to — jWh/2 for Wh<<1. According to Eq. (5.19)
the extrapolator transfer function Hg should be equal to 1+jWh/2 for Wh<K1. We
can generate a transfer function proportional to j W by using an algorithm which ap—
proximates differentiation. Thus we iet the incremental compensation Ar, be given
by the backward difference

Arg =rp="rny (5.21)
Taking the z transform, we have
AR*2) = (1 = 27)R() (5.22)

We define AH* = AR*/R* as the incremental compensator z transform. Thus

(5.23)

The incremental compensator transfer function for sinusoidal inputs is given by
AHx(elWh) = 1 — ¢ JWh (5.24)
Expanding the exponential function in a power series, we obtain

1

24(wh)“+--- (5.25)

AH=(edWh) = jwh +12(wh)2_ jls(wh)3+
For Wh<<1, AH* inEq. (5.25) clearly provides the required incremental transfer
function proportional to j W . To make the compensator transfer function HS =1— ey

=14+jWh/2 it is evident that we should let HZ = 1+ A H*/2. This in turn means

5—11

from Egq. (5.21) that the formula for the compensator output is the following:

a

1 1
fn = fa+58r = ry+3(rn—rny) (5.26)

After taking the z transform and writing the compensator transfer function for sinu—
soidal inputs, we obtain

He(edwny = 3 _ 1 ,-jwn (5.27)
2 2

From Egs. (5.8) and (5.27) the formula for the combined compensator—DAC transfer

function becomes

1— e Wh [3 1 e-jwh}

He(jW)Ha(ed¥h) = S-3
jw

5~ 3 (5.28)

Expanding the exponentiai functions in power series and negiecting terms of order h4
and higher, we obtain

He(jw)HS(ejWh)
h

=~ 1 +1§(wh)2—j%(wh)3, Wh<<1 (5.29)

Comparison with Eg. (5.10) for the uncompensated DAC transfer funct:on shows that
now the fractional gain error predominates and is equal to (Wh) 2/3 for Wh << 1.
The phase error has been reduced from — wWh/2 to — (W h)3/4 for wh << 1.

5.5.2 DAC Compensation Using r,.r,

Next we let the incremental compensation used to generate a transfer function
proportional to jw be given directly by the derivative, Fn, of the input to the DAC.
This requires, of course, that r, is a state variable or is explicitly related to state

. variables such that fn can be computed. Thus we let

Ar, =r

oh (5.30)
from which the incremental compensator transfer function is given by

AH* = jwh (5.31)

To obtain the desired compensator transfer function HZ =1 + jWh/2 it is evident
that we should let HZ =1+ AH*/2 from which it follows that

S (5.32)

9—12

C

i

The compensator transfer function becomes
HE(edWh) = 1 +j12wh (5.33)
as required. From Egs. (5.8) and (5.33) the formula for the combined compensator—

DAC transfer function becomes

-1 W
- h

jw
Expanding the exponential function in a power series and neglecting terms of order
h4, we obtain

Ho(jW)Ha(edWh)y = [1+j%wh] © (5.34)

He(jW)Ha(eIWh)
h

~ 1 2 .1 3
=1 +12(wh) 124(wh) . Wh<<1 (5.35)

Comparison with Eq. (5.29) for compensation based on r, and r,_; shows that in Eq.
(5.35) the gain error, (W h)2/12, is one—fourth as large. The comparison also shows
that the phase error, —(Wh)2/24, is one sixth as large. Thus the DAC compensation

based on r, and r, is significantly more accurate than compensation based on r, and

rn_1.

5.5.3 DAC Compensation Using r,. r,,and r,

When first—order compensation is used, we have seen in Egs. (5.29) and (5.35)
that the combined compensator—DAC transfer function error is proportional to
(u)h)z. We can use a second—order compensation to eliminate this error. The pro—
cedure involves the generation of a transfer function proportional to w2 by means ot
an algorithm which approximates the second time derivative. Thus we let the incre—
mental compensation Ar . be given by the second—order difference

Afp =Ty —= 20y + gy (5.36)
Here the right side of Eq. (5.36) is proportional to the numerical approximation for

rnoq- Taking the z transform and solving for AH* = AR*/R*, we obtain

AR*(z)
R*(2)
The incremental compensator transfer function for sinusoidal inputs is then given by

AH® = 1 — 2271 4272 (5.37)

AHx(edWh) = 1 —2¢iWh 4 g-j2Wh (5.38)

Expanding the exponential functions in power series, we have

5—-13

AH*(eIWN) = —(wh)?+ j(wh)d+ (5.39)

From Eq. (5.29) we see that the desired incremental transfer function, AHZ, is e—
qual to —(Wh)2/3, i.e., AH*/3 in Eq. (5.39). Thus we let Ar:n, the incremental
compensation, be equal to Aar, /3 = (r, — 2r ; + n-a)/ 3. This is added to the
previous first—order compensation algorithm of Eq. (5.26) with the tollowing result:

1 1
fp =Ty +3 (fp = rpy) + 3 (rp—2r 4 +rn,)
or
- 11 7 1
'n = 5™ ~ 5 n1 T 3 n2 (5.40)

After taking the z transform, replacing z by eJWh and solving for the compensator
transfer function, we obtain

1—L='2j‘*’h (5.41)

From Eq. (5.8) we have the following formula for the combined compensator—DAC
transfer function:

. 1 — e"jwh 11 7 1)
Ho(jW)H2(edWh) = — = | — _ =g JWh — p-2jwh 5.42
e(jW)Hg() W 6 5 + 3 ()
Expanding the exponential functions in power series and neglecting terms of order hS
and higher, we obtain

Ho(jW)HZ(edWh '
e (])hc() ;1+%(wh)4+j1z(wh)3, Whe<T (5.43)

With the second—order DAC compensator algorithm of Eq. (5.40 we have eliminated
the gain error of (Wh)2/3 in Eq. (5.29). The predominant error for Wh<<1 is now
the phase error (Wh)Z2/4,

3.5.4 DAC Compensation Using r. fn i

if r'n is avatlable, which will be thg case if r, is a state variable in the simu—
lation, then a better approximation to r, than that given in Eq. (5.36) is one pro—

portional to]
Aro =rph—r +r., (5.44)

The incremental compensator transfer function is given by

AH*(edWh) = jwh—1+eWh (5.45)

5—14

Expanding the exponential function in a power series, we obtain
: 1
BH(eI9P) = — =~ (wh) 24 j(wh)? 4 - (5.46)

In this case we apply the second—order compensation to the first—order compensa—
tion defined in Section 5.5.2 and based on r, and fn. From Eg. (5.35) we see that the
desired incremental transfer function is equal to — (wh)2/12. This can be obtained
by making AHJ =AH*/6, where & l:i* is given by Eq. (5.46). This in turn means
that the incremental compensation, Ar ., isequal to Ar, /6, with Ar defined in
Eq. (5.44). This incremental compensation is then added to the previous first—order
algorithm of Eq. (5.32) to produce the formula

- 1
rn =" +—2-rnh +—-(r h—rg+rnq)
or
. 5 1 2.
r = E[n 'grn_1 + -;-rnh (5-47)

From Eq. (5.47) the compensator transfer function is given by

Hz(edWN) < % +1Ee'jwh+%jwh (5.48)

From Eq. (5.8) we have the following formula for the combined compensator—O0AC
transfer function:

: 1 —edWhrg 1 .
Ho(iWYH (edWh)y = —= |2 4 —-iwh i Wh 5.49

Expanding the exponential functions in power series and neglecting terms of order h®
and higher, we obtain -

He(jW)Hs(eIWh)

- 1+‘—(UJh)4+J (wh)3, Wh << T (5.50)

Comparison with Eq. (5.43) for compensation based on Fn- M-y @nd r_, shows that
the compensation here, which is based on r,, r, and r .. exhibits one—ninth the
phase error and less than one—thirteenth the gain error for Wh<<1. As we have seen
in previous examples, the time derivative of the data sequence input, when available
explicitly, should be used in preference to past values of the data sequence when im—

plementing digital extrapolation or compensation.

5.5.5 DAC Compensation Using r,.rp.

This second—order DAC—compensation method is based on r . r, r. and En_ It
is a convenient scheme if r is a state variable and the integration is bemg performed
usmg a predictor or predactor corrector algorithm, since in this case rnoq @ well as
rn will be avaiable at the nth integration frame. Here we use rn -1 [0 provide an
incremental compensation proportional to the second derivative. Thus we let

Ar, = (ry—rpq)h (5.51)

Taking the z transform, replacing z by e %M, and solving for the incremental com—
pensator transfer function, we obtain

AH*(edWh)y — jwh(1—eiWh) (5.52)

Expanding the exponential function in a power series, we have
AH*(edWh) = —(Wh)2+j—12-(wh)3+ (5.53)

As in the previous section, this second—order incremental compensation is added to
the first—order compensation based on r, and r,. From Eq. (5.35) we see that the
the desired incremental transfer function is given by — (wWh)“/12. This can be ob—
tained by making AHZ = AH*/12, with A H« given by Eq. (5.53). Thus Ar . the
incremental compensation, is equal to Ar /12, with Ar defined in Eq. (5.51). This
incremental compensation is then added to the first—order algorithm of Eq. (5.32) to
produce the formula

. 7. 1 .

fn="rat 720 T 12 (5.54)
From Eg. (5.54) the compensator transfer function, when combined with the DAC
transfer function of Eq. (5.8). results in :

_ a-Jwh

1 £ 1+leh(7—e-3wh) (5.55)

He(jW)HE (1Y) = <

Expanding the exponential functions in power series and neglecting terms of order ho
and higher, we obtain

H CWYH X erh
e (])hc() 214 3120(“”’) + —(wh) . Wh<<T (5.56)

Comparlson with Eq. (5.43) shows that the compensation here, which is based on r
n and r . is considerably more accurate than compensation based on r. rp_, and

5—16

,,,,

rn-g- On the other hand, comparison with Ea. (5.50) shows that it is slightly less ac—
curate than compensation based on r ., rn and r,_,

5.5.6 DAC Compensation Using r,.r, and r,

The final DAC compensation method which we will consider is based on using
Fn-* 'n and r . To use this scheme requnres that both r and En are state variables.
This will in fact be the case when r represents an acceleration, which is integrated
to obtain a velocity, . which is in turn is integrated to obtain the displacement r ..
Here the second time derivative is represented directly by r,. The corresponding in—
cremental compensator transfer function is — w2 From Eq. (5.35) we see that the
desired incremental transfer function is given by —(Wh)2/12. Thus we let the in—
cremental compensation Ar = r,h2/12, which is then added to the right side of
Eq. (5.32) to produce the formula

- 1 1

g = fn +=r_ 4+ —

. L (5.57)

From Eq. (5.57) the compensator transfer function, when combined with the DAC
transfer function of Eq. (5.8), results in

He(jW)HS(edWh) = —— i+j—~u)h—1—(wh) (5.58)

Expanding the exponential function in a power series and neglecting terms of order
h6 we obtain

He(jw)Hz(el¥M) _ .

- =1 +ﬁ(h) 1440(mh) Wwh<<1 (5.59)
Comparison of Eq. (5.59) with equations representing the combined transfer function
errors for the other second—order DAC compensators, as given in Egs. (5 43), (5.50)
and (5.56), shows that the scheme here, which is based on r, r, and rp,. is by far
the most accurate. Not only is the fractional gain error represented by the (W h)
term in the equation smaller, but the phase error is of order (Wh)™ and has a very
small coefficient. In the other schemes the phase error is proportional to (W h)st

5.5.7 Summary of DAC Compensation Schemes

Table 7.1 summarizes the BAC compensation algorithms considered in Sections
9.5.1 through 5.5.7, as well as the asymptotic formulas for the gain and phase errors
of the combined compensator—DBAC transfer function for each algorithm. For the

5—17

Table 7.1

Zero—Order DAC Extrapolation; Summary of Compensator Formulas and
Combined Compensator—DAC Transfer Function Errors

Transfer function error for Wh<<1

Fractional Gain Phase
Inputs Formula
Error. ey Error, e,
- . 1 2 1
Mn ro, =y (no compensation) r (wh) -3 wh
- 3 1 1 2 1 3
"n- n-1 =5~ 5" E(wh) _Z(wh)
3 - 1. 1 2 1 3
MneTn rn=rn+§rnh E(wh) —2—4(wh)
R 11 7 1 1 4 1 3
. ~ 5 1 2 . 1 4 1 3
"n- Tn- Mn-1 rn=grn+grn—1+§rnh Zg(wh) gé(wh)
. - 7 - 1 . 13 4 1 3
RO O fn="n+ Ernh_férnqh ﬁ(wh) -Z-Z(wh)
. . - 1. 1. 2 1 4 1)
= = — — —— (W
neTns 'n M rn+2rnh+12rnh 720(wh) 1440(h)

two first—order schemes the predominant transfer function error is the gain error
proportional to (W h)2 with the e fn method clearly superior when it can be used.
For the first three second—order schemes the predominant error is the phase error
proportional to (wh)? with the r . r:n, rn-q Method superior, but with the r . fn,
rn.; method about two—thirds as accurate. Finally, the r,. r,.r, methad is by far
the moast accurate, with a very small gain error proportional to (W h)4 as the pre—
dominant error for the combined compensator—DAC transfer function.

Figure 5.9 shows plots of the gain and phase versus Wh for the compensator—
DAC transfer function for r, r,_, compensation, r'p. t:n compensation, and no com—
pensation. Note that both first—order compensation schemes cause peaking in the
gain curves at between ong—third and one—half the sample frequency, with less

peaking in the case of ry. M, compensation. The superior phase characteristic of the

5—18

0000000

ccccc

lllllll

lllll

esvcsseNscscrtsovsrcccncscccacponaal

cooococcvedosncavvovavenced

0000000

-

''''

lllll

doovsssovcanconalds

ccccccc

lllllll

JJJJJJ

lllllll

e

dooscsscosssvncasdrnssssacessnssabdoossecssccsnssvossse

ooooooo

sesesasaRagressesodreasssspunad

oooooo

LY T2

!!!!!!!

0000000

aaaaaaa

sample
frequency
6.0 ¢

: ' H
. [el u
....... deee Ocdenvcanad
HE VIR .
L :
v '
. [g M
IR :
HE = W :
c i £ !
o H .
L. O3 :
ke esTS eqeee Crh ooooooo H
o H N
0 3 (=3 H
=Sl B N H
L ., '
= o }
m : (W H
o : :
ST ?
. esessscesy A
e N M
. 3 M
¢ " r
w0 : :
LN\ : :
c ; :
“ ' :
3 .
A :
........ R R LT AN
. .
v 3
N .
N 3
. . N
. , .
. . N
\ . .
. 1] .
3 . .
. .
. .
3 .
1Y .
vvvvvv VAsvesssslecasvnnal
.| N N
. N M
[. 3
. 3 N
N . N
a v N
3 . N
N .
N .
\ . .
] N .
. N .
. 3 M
* 3 N
. . N
------- SaceseNet 2
. . v
. .
. N N
. . .
. . .
. 1] "
: ' \
. \
1] .
. [
. .
. .
. .
N .
w < N o
- - - -
oy
424
O

0.8

0.6 freaeraceracaes

: - ; ; ; : K c
M 13 13
LA e RTINS SUTURRRR Leeemnenenes S AN Lecenecrnns derenefl 2
L) ; .
: © : : Y ' : @
.
: : : : : 4
: : : : @
: : } : : Q
.
; m m m : £
.
AN < S|l £ feeeenannnn eeeeflannn Leeanarasses S Sy A o
: W w : : : : b
M] 3 » N [+}]
.) N . N -
M . .]
M + 3 . “ . -
' 4 ' : H ' . o
. . 4 H H _
u . [u " N
N ’ . . ’ 4
. o i o ’ N N " N w
I S . B ST T PR NV 499 tesscccsssan Ny & tepeanannne Sesssmasaaan —
N <3 w <t . H H H N —
: H N N ! : bt
H R H H . : : =
: A : : : : : ¥
u Q “ " ") M =
N <) w
: @ : : : : :
N
: o g o : : : ; " Q
Senmenns . i) o« hossssscsengosevecnance aveesssaes ATtssessssssgsesasesavan Sesesssevons A
: M L M H : : O
M A . : N
i 2] : : : o
H [«] b M c .
’ — (3 . (@] M @
N c : P = H m
L4 »
el © 3 S . L9 ; 2
....... . w « pres esvesstescsgfecnsyeccncugesssqen sevsesqessaversrsegrssstansnes
b N € : = : Q@
? @ : [3 @ H e 1]
} £ i 6 g : =
: = : > E : >
N . -~ . N
: 0 : ® : O : 4)
N [72] . (&) N [ot
" N " g
N [. L aud
teseceee nU. nU. 4” p...m...._n tensscasanan m m'
]
: At - ! : E { u H b
: : g i : w
: : : o + : .
N . . c [H (w))
: : : : : e
.
! © o | ! H H : -
o0 oo o o Q o Q o .
n/w . ™ w (8} N [T [s0] =
(o] o [} | i ~— 1-! q .m..
! w

Phase
angle in
degrees

5-19

- fn scheme is also evident in the figure. The plots in Figure 5.9 cover the entire
frequency range out to the sample frequency Wg = 2T/h, i.e., Wah=2T; the
formulas in Table 7.1 apply only for W.h<<1.

Figure 5.10 shows plots of the gain and phase shift versus W h for the com—
pensator—DAC transfer function cases involving second—order algorithms. Note the
very appreciable peaking in the gain curve for r,.r._,, r,, compensation, as well as
the more modest peaking associated with r . rp.ro, and ro, r,.r,, compensa—
tion. In all three cases the peaking occurs at roughly one—half the sample frequency.
The peaking associated with r,, r_,, r,, compensation and the large accompanying
phase lag could cause significant problems in a hardware—in—the—loop simulation if
the output data sequence {r,} driving the compensator and DAC has significant fre—
quency components near one half the sampie frequency. Note in Figure 7.10 the ex—
cellent gain and phase performance of the compensation based on r . r and r.

To this point all of our frequency—domain considerations have focused on fre—
quencies between zero and the sample frequency Wg = 2T /h. As discussed in the
next section, the DAC input data sequence will contain frequencies above W g as well.
These will result in DAC output frequencies above Wgq. For example, a sinusoidal
data sequency at W /2, i.e., one—half the sample frequency, will have a fundamen—
tal component at W4/2 and harmonics of the same amplitude at 3, 5, 7. ... times
the fundamental frequency Wq4/2. For W= W4/2, we note that W h/2 =T/2 and
according to Eq. (5.9) the DAC (without compensation) will have a gain [Hg(j W)l/h
given by 1/(T/2) = 2/T. For W= 3Ww/2 the DAC gain will be (2/1)/3; for
W= 5Ww,/2 the DAC gain will be (2/71)/5; etc. Thus the DAC output consists of
the fundamental plus odd harmonics. with the amplitude of each harmonic inversely
proportional to its frequency. This is not an unexpected result when we recall that a
data sequence input to the DAC at one—half the sample frequency produces a DAC
output that is a square wave at one—half the sample frequency. A Fourier series ex—
pansion of a square wave contains the fundamental plus odd harmaonics, with the am—
amplitude of the harmonics inversely proportional to their frequency.

in general, a DAC with zero—order extrapolation, with or without compensa—
tion, will produce harmonics at frequencies above the sample frequency due to the
discontinuities in the DAC output. The same will be true for a DAC using any order
of extrapolation, but to a lesser degree when the input frequency is small compared
with the sample frequency. |f such discontinuities cause problems. in the simulation,
the DAC output can always be passed through a low—pass analog filter. However, the
low—pass filter will itself introduce additional phase lag. The most effective solution
for such a problem is to use a fast enough sample rate. This in turn requires a digital
computer which has the speed necessary to achieve integration frame rates which are
well beyond the highest significant frequenctes in the simulation

5—20

v -4
N ' ! m g
: : R S Qennnenn . .
0000000000000 "f:lJItoltctch.IQO:'OI u " 6
Bl
[t H ! m m
o : b« :
] . Dol : {
[4¢] N " [N “
w N N c M :
& m Pt : : o
\ Neums Seecessabas - ayecsatace e nfuannae .
SR © F Seesenseneess - :n m 3 e
£ ' - ! :
9 R boov g :
(&) rnm - : : m
™~ . N ' . N
i LS H . "
< ct . F) :]
- Tl b H N . o
S eer nevses Veeeeead Y Y AR I R
T - N [od . N N <t
& rn" — '
4 .
- : ; : H
1] of H
,/ : : :
M 3) .
S m : o
: H teasaccssaaned .
............ RS T SCERRLLIEY SESSLEEE co:m. - -
. ' :
. N H
N 1 L]
. M "
: : !
N ' s
. H] N
: '] c
: : o o
.m S S V0 VIR I SR +...¢w.m o~
.................... :
R M w .
: : c i
u M Q u
N ' p"
" : £i
L]
v ' 0!
: ' o1 o
llllllllllll l“l.lllll‘.l'll-'lllll.' LEX S 22 esessne Olm' -
: H c
. . "
: ' i
N . .
» N "
: : :
H s .
Y " " o
: s)
oo
92} o) Lo] —.D.)
[l
‘o
&)

sample
frequency

Dimensionless frequency, Wh —»

— : . . "
H \ H H N H N H
0. cccccc mo ooooo “r ooooo mc 4om ooooo mc:uo e~ " cccccc nf ooooo "' ooooooo
w0 . M . 13 . — M H
L : : ! ' & ' :
SO A 44 BT T SR
Y N S SR N
FOR : ! : : c i ; "
.--c..n..cumo- ..4m ccccc 4“4 3 SO am..- m-.aul A Ry .c.
| . . '
wn . H . N N N “ A ! ?
' H M l . . . + .
3 ‘' H N) : ! : M :
:) M N < . . [.
: : -y Yy v A
I A B
N H .] .] .
nm [5 S A e, rnv':cofoo' B T pesees == 4
M . . [~ . M N ' N
N A N S
H H . H - v H H H '
N 3 . . [N N N H
] M H M H '
N \ N H N ’ 3] 3
N M M M . ’ . . .
: : : : : : : : :
0 : ""O '''' N o
N PO SO cssaqessscs Sessedohons s M N J. Jo
™ H : VY L e -
: : : ! 16} ! : :
' : o i oo
" A i b
.]
: 7 asn N -5 E
N .
3 H N N M . + .
0 . N ‘-lp.- llll teanes | S Jeeunef
fecece ¥ oo foncdennss Neeses FRLLELE: m 3 N 3 3
N . ' . N N N N N
. . [] . o] . 3 .
+ . N H N H N
.. 2 S B S N
. 3
M S . . .
LTI : ; : : :
e N > Y S SO SO SR SURUt S
sfror- u-l e : le ' \ ¥ N
- : : { E oL : .
y . T O H v . ' N
N ! N [S . N N
. [N & I N M N N H
H H H M [] . . N
) . . M N H N H ?
3 . Y 0 . M M N H B
N T VT T
. . ' M N N H H :
- A
o N N : N : ! s L M
y (=]] o (o]
e © g O N 0 o
1 ! -~ <_| nﬂ._
I
S »
20
25
o
0 cw
o R =]

Figure 5.10. Frequency response of DAC with second—order compensation.

5—-21

5.6 Dynamics of Analog—to—Digital Conversion

When a real—time digital simulation requires inputs from physical systems
with continuous (analog) outputs, then conversion of the continuous signals to digital
data sequences is required. This is accomplished for each continuous input by means
of an ADC (analog—to—digital) converter). Each ADC requires a finite conversion
time, usually short compared with the interval h between samples. Sometimes a
single ADC is used for a number of analog input channels, in which case a multiplexer
switch must be used to connect the ADC to successive analog input channels. Under
these circumstances it is necessary to buffer each analog channel with a sample—
hald circuit if time skew is to be avoided. Then all of the analog inputs can be sam—
pled simultaneously and held-at their sample value while the muitipiexed ADC suc—
cessively converts each channel to a digital signal.

With the advent of low—cost monolithic ADC's, it is now common to assign a

single ADC to each analog channel, so that all conversions can proceed in parallel.
Even in this case, however, a sample—hold circuit may be desirable so that the con—
verted digital data in a given frame represents all analog signals sampled at a com—
mon time.

in this section we will examine the frequency spectrum which results when a
continuous signal is sampled at a fixed sample rate. Consider the continuous signal
f(t) shown in Figure 5.11a. Assume that f(t) is sampled every h seconds using a
switch that is closed for o h seconds, where 0<x < h and & represents the switch
duty cycle. Ttten the sampled signal f*(t) results, as shown in Figure 5.11b. We can
represent f*(t) as follows:

f*(t) = S(t) £#(t) _ (5.60)
where the switching function S(t), shown in Figure 5.11c, is given by

1 1
S(t) = 0, > h £]t—nh|-< 5 h

(5.61)
=1, [|t—=nh|£{xh

For @ = 1 the sampling process is continuous. As & — 0 the sampling.process be—
comes instantaneous. For finite & we can expand the switching function in a Fourier
series. Thus we let

s(t) =) C edkWat (5.62)
k

=-0

where U, = 2T°/H, the sample frequency in radians per second. The Fourier coef—
ficients are given by the formula

9—-22

f(t)
—f’_\ﬁ\\
//////// _~d/,////
I | | | |
—h 0 h 2h 3h 4h t-»
a. Continuous signal
f(t)
1)
/ \
| 1 } 1 |
—h 0 h 2h 3h 4h t»
b. Sampled signal
S(t)
) 1 BE R) - -
J] | |]
—h 0 h 2h 3h 4h t-»

c. Switch function

Figure 5.11. Sampling process.

5—23

+ﬂ/wo

fs(t) e JkWotgt (5.63)
-M/w,

_ D

Cy >

From Eq. (5.61) we have
+xT/2 . +o /W,
W . 1 .
Cx = 57 fs(t)eJk‘*’otdt = elkWot

j2m
-aT/2 12 k o /W,

or

pJETk _ o-J*Tk sin & T k
j2mmk

For xTTk<< 1, i.e, x<<1/Tk, Ck becomes

Cp = o, <KWk (5.65)
Thus for a very short switch duty cycle, o, the Fourier coefficients for the funda—

mental frequency W, and the lower harmonics (k = £ 2, £ 3, etc..) are all equal
approximately to .

Substituting Eq. (5.62) into Eq. (5.60), we obtain

fu(t) =) C, f(t) exWot (5.66)

k=-

To obtain the frequency domain representation of f*(t) we take the Fourier transform
of f*(t). Thus

o ® o
Fre(jw) -_—ff«(t)e-jwtdt ___[chf(t)ejkwute-jwtdt
- o K=-®

or

o) w0
Fr(jw) = 2 Ckff(t) e TI(WkWg)t g (5.67)
k=-0 :
But the Fourier transform of f(t) is given by
®
Fjw) = ff(t)e'j“’tdt (5.68)
-

5—24

Thus we can write Eq. (5.67) as
F*(jw)=kZCkF(jw—jkw0) (5.69)
=-®

Eq. (5.69) shows that the spectrum F*(jw) of the sample function f*(t) is a linear
combination of the original spectrum F(jW) and the original spectrum shifted by
kWog., k=121, %2, Furthermore, for near instantaneous sampling (<< 1),
all the translated spectra will have essentially the same amplitude (Ck = o) until k
becomes quite large in magnitude.

Figure (5.12) shows this result graphically, where for simplicity only the mag—
nitudes |F(jw)| and |F*(jWw)| are plotted versus W. Note that for frequencies
W > Wy /2 the spectrum |F (jw)| of the continuous signal f(t) "folds back" on itself
in the spectrum |F*(jw)| for the sample signal f*(t). This means that frequencies

|F(jw)l
W -
4 } $ + { $
3w, 2w, W, 0 W, 2w, 3w,
[F=(jw)l
et ...’.‘A oeet e et T P T pat “tadac? 4 w +

Figure 5.12. Frequency spectrum, |F (jWw)|, of the continuous signal and frequency
spectrum, |F*(jWw)|, of the sampled signal.

5—25

contained in f(t) which are larger than one—half the sample frequency will show up as
frequencies below one—half the sample frequency in f*(t). In fact, a frequency in f(t)
equal to Wy, the sample frequency, will be converted to zero frequency, i.e.. a con—
stant offset or bias in f*(t).

This foldback phenomenon, called aliasing, can be prevented by passing f(t), the
continuous signal, through a low—pass analog filter before sampling. This is an im—
portant consideration in interfacing a real—time digital simulation to analog inputs.
If the analog signals have significant frequency content above one—half the sample
frequency, which, for example, would be the case if the analog signals contain high—
frequency noise, then the signals should be passed through a low—pass filter before
being sampled for A to D conversion.

Determining the order and cutoff frequency for the low—pass filter involves a
tradeoff. The lower the cutoff frequency W .. which must be below Wy/2, the larger
the accompanying phase lag. In addition, frequencies in f(t) which are below W, /2
but above W . will be lost. Also, the higher the order n of the low—pass filter, the
larger the accompanying phase lag for a given W .. On the other hand, the larger the
order n and the lower the cutoff frequency W, the higher the attenuation of fre—
quencies in f(t) above Wg/2.

An alternative to passing f(t) through an analog filter before sampling and A
to D conversion is to perform the sampling and A to D conversion at a higher frame
rate, one that is an integer multipie N of the original frame rate. The resulting fast
data sequence is turned into a data sequence with the original frame rate by utilizing
a simple digital algorithm. Thus every N successive samples from the fast data se—
quence are averaged to produce a single sample, which resuits in a data sequence at
the original frame rate. The multiple frame—rate sampling followed by the averaging
algorithm constitutes a low—pass digital filter. The effective time delay of this fil—
ter is h/2, where h is the period of the output data sequence. This is because the av—
eraging algorithm must wait until all N samples over the interval h are received in
order to compute the average, which represents a smoothed data value at the mid—
point of the interval h.

Note that a sinusoidal data sequence {rn]- can be viewed as a sample function
r#(t) derived from a continuous signal r(t) = A sin Wt , where the duty cycle &= 0.
Then the single spectral frequency W contained in f(t) will be transformed in r=(t)
to the frequencies W + kW, , as shown in Figure 5.13. For frequencies above W
contained in r*(t) and hence {r,,}. output DAC's driven by {r,} will respond in ac—
cordance with the DAC transfer function M (jW) or the compensated DAC transfer
function HXHg. In the DAC frequency response curves shown in Figures 5.5, 5.9 and
5.10 the gain was plotted only up to W = W, . the sample frequency. Reference to
Figure 5.13 shows that the sinusoidal data sequence input to the DAC or compensat—

5—26

IR(jw)l

1 1 L 1{ 1 1 w _’
—Bwo -2m° -w, -w 0w W, 2wo Bwo
[R*(jw)|
3w, AT -W, 0 Wy 2w, 3w,

Figure 5.13. Spectrum |R(jWw)| of a continuous sinusoid of frequency W, and
spectrum |R*(jW)| of the sinusoid when sampled at frequency W, .

ed DAC will also contain frequencies above Wy to which the DAC will respond. Ref—
erence to the various DAC and compensated DAC gain formulas in Sections 5.3, 5.4,
and 5.5 shows that in general the gain falls off with increasing frequency (see com—
ments in the last twp paragraphs of Section 5.5).

	img20200421_13353603
	img20200421_13583824
	img20200421_14090567
	img20200421_14203012
	img20200421_14243912

