Defining and Using a Data Dictionary
with Complex /O Intensive Programs

Walter A. Lounsbery, 6-4-90

—y
o

NN
Pwh=O

W0 W W W W
NN VN U e
N — -

hhARS
N = =20
N =

4.3

Table of Contents

Table of Contents
Abstract

Preface

Sources

Introduction

Data Dictionary Definitions

Language

User Interface

Support of Engineering Units
Overall Programming Scheme

Detailed Basic Data Dictionary Design

Main Program Requirements

COMMON Block Definitions

Program Routine Requirements

Variable Access in the Program
Programmed Variable Access for the User
Basic File Variable, Array, and Table Input
Basic Interactive Variable and Table Editing

Advanced Data Dictionary Design
Variable Length String Storage in FORTRAN
Variable Aliasing and Wildcards
Interactive Variable Allocation

Text Description of Variables
Journaling

Input Error Detection

Group References

Interactive Initialization by Reference
Interactive Output Definition

Program Data Tracing

Data Dictionary

WNN —

N

Abstract

This report discusses desired features for data dictionaries in
computer programs from the standpoint of engineering applications.
A data dictionary provides the application program with information
about program data variable names, types, and units. Enhancements
possible with various data dictionary schemes are also introduced.
Although this report does not present actual computer program code
to implement a data dictionary, some skeleton examples are shown.

The data dictionary scheme is used to provide batch and interactive
named input and output of variables used by the program. This also
provides the foundation for a number of features. Some basic
features supported by the data dictionary would be a generalized
data table input, such as the AlphaZulu Format, interactive
examination and editing of variables, and group referencing for
initialization. Advanced features include variable aliasing and
wildcards, journaling, and interactive output formatting.

Preface

This report is a product of the Aerodynamic Stability and Control
Engineering Modernization (EnMod) effort for 1990. It is an effort to
collect several ideas about engineering computer programs into a
reasonably cohesive document. Many of these ideas will be
incorporated in this year's EnMod developments.

The ideas presented here have been extensively refined in the two
months since this report was started. | feel that the methods and
skeleton examples presented here are still very useful, although
they are somewhat primitive compared to current practice. Specific
reports will be released to detail the advanced concepts and
techniques of this year’s data dictionary support library and
development tools.

Data Dictionary 2

Sources

1. "Advanced Continuous Simulation Language (ACSL) Reference
Manual", Mitchell and Gauthier Associates, Concord, Mass., 1986

2. "Development and Use of Numerical and Factual Data Bases",
AGARD Lecture Series No. 130, 1983

3. Gonnet, G. H., "Handbook of Algorithms and Data Structures”,
Addison-Wesley Publishing Company, 1984

4. Hudak, Paul, "Exploring Parafunctional Programming:
Separating the What from the How", IEEE Software, January 1988

5. Landingham, George M., "Aerodynamic Data Base User's Guide",
U.S. Army Missile Research and Development Command, 5 June 1979

6. Radcliffe, Robert A., and Raab, Thomas J., "Data Handling
Utilities in C", Sybex Inc., 1986

7. Smith, L. J., and Matthews, N. O., "Aircraft Flight Test Data

Processing, A Review of the State of the Art", AGARD Flight Test
Instrumentation Series, Vol. 12, 1980

Data Dictionary 3

1.0 Introduction

One of the most demanding and complex areas of computer programs
involves engineering methods and analysis. Although computers are
well suited to handling large quantities of numbers and complex
computations, these are often handled in a very abstract manner.
The formulas are often coded in computer languages and algorithms
that bear little resemblence to the actual methods. Data is often
spewed out in lines of unlabeled numbers, sometimes to binary files
that are not readable without special help.

In this environment critical errors can easily occur in the transfer
of data and interpretation of reams of computer analysis. It is
common to speak of the computer program as 'code’ even though its
results may be more ciphered than the program. In fact, it may be so
difficult for the engineer to review the analysis of the data that
errors in the analysis method itself may go unnoticed.

Data comprehension is improved if the data can be handled by the
engineer in a natural, easily understood fashion. It is important that
the engineer deal with named variables with associated units
instead of data codes of unknown or dubious origin. In fact, all
engineers are trained that problem solving begins with

identification of the relevant factors (variables) which are
immediately associated with units before a single equation is
written. Solving a problem any other way is an invitation to
disaster.

Unfortunately, computer programs are not usually written for good
data comprehension. The engineer has historically solved the
problem on paper using familiar methods. The equations were
handed to a programmer along with an input format and output
format for the data. The engineer was not required to program the
machine and deal with computer languages that don't work in unit
systems, or name factors with proper mathematical symbols. The
programs were treated as a 'black box' by the engineer, to be tested
for correctness, but not to be altered except by the programmer.

The advent of improved computer access, interactive workstations,
and increased engineer involvement in application programming has
changed that situation. Now engineers often create extremely
complex computer programs, after taking little or no formal training
in programming. Engineers are required to modify or rewrite

Data Dictionary 4

programs that have no programming documents or in-line comments.
It is rare to leave any of the programming to a computer
programming specialist. If the responsible engineer knows the
correspondence of the program code with the analysis, program input
and output often looks like a collection of random numbers with
occasional cryptic labels. While the programs are created faster
than before, it is widely recognized that they are more error prone.

The error rate is also driven by communication between the engineer
that wrote the program, and other engineers that must use it. Any
computer program of significance should be of use to everyone. Yet
only the engineer that wrote the program may fully understand its
coded representation of the fundamental equations of the problem.
At the very least the user should be able to understand the variables
in the program and how they are used.

This presents a difficult problem in the current computer
environment. Although there is an ongoing debate about the best
computer language for engineering use, one that promotes correct
analysis and communication, for the most part the engineering
community is entrenched with a simple computer language called
FORTRAN. FORTRAN lacks the capability of describing measurement
units, and until recently, could not name a variable with more than
six alphanumeric characters.

One way to improve variable definition and communication in a
FORTRAN framework is to incorporate a "data dictionary” of
important variables into the computer program. Just as the
computer program equations are the analogue of the mathematical
equations that solve the program, the data dictionary is the analogue
of the factor identification that every engineer performs as the
first step in solving a problem. The data dictionary is not a black
box that can be attached to an arbitrary program, however. It must
incorporate some simple programming techniques, which are
supported by a few generic subroutines that handle common data
input/output chores. The techniques are simple and add very little
to the programming effort. The payoff is higher quality data
analysis, better programming, and a higher degree of self-
documentation in the program.

The data dictionary techniques described here provide the capability
to go beyond better programming habits. Once the program has a
description of the variables, it is possible to interactively inspect
or edit variable contents, to halt and restart calculations, to

Data Dictionary 5

interactively format output files or printout, and input function.
tables that are dependent on any variable in the dictionary.

The last capability is a very important one. Often engineers write
equations that include undetermined functions. For example,
aircraft lift coefficient may depend on the lift increments due to
flap deflection, which may be determined by analysis and adjusted
by data from wind tunnel tests. If it is discovered in test that the
lift increment due to flap is dependent on gear position, or stores
configuration, those factors can be incorporated in the table and the
program with a data dictionary would read the appropriate value of
the table. A program without a data dictionary would require a
rewrite of the program to read the new table, an expensive process
that contributes to the possibility of errors in the program.

2.0 Data Dictionary Definitions
2.1 Language

This section describes a scheme for implementing a data dictionary
in a FORTRAN programming environment. FORTRAN imposes rather
severe limitations on construction and use of a data dictionary.
Perhaps the worst limitation is the lack of memory allocation
capability. It is assumed here that FORTRAN 77 or later compilers
will be used, so that the character data type is available. This
discussion assumes a familiarity with FORTRAN 77 and simple
programming techniques.

2.2 User Interface

The addition of a data dictionary simplifies program use by the user.
The user can view or alter data by name. Input files can set variable
values with simple, namelist-like syntax. Functions such as tables
can use any variable in the data dictionary without rewriting the
program. Good user interface design requires the capability to
inspect the data dictionary. Both interactive and 'batch’ execution
interfaces are described.

Data Dictionary 6

2.3 Support of Engineering Units

Engineering data involves numbers and the units associated with
them. Although programs for engineering analysis almost always
handle units by convention (the input or output number is understood
to be in "proper" units) it is also true that most engineering analysis
programs lack manuals that describe the convention.

Ideally, the program should perform automatic checking and
conversion. All data should be input with its units, and those units
checked for appropriate type (length, time, area, and so on).
Equations in the program should be able to accept a wide variation in
unit systems (British, MKS, and so on), performing automatic
conversion to obtain the desired result. This ideal capability is
largely unobtainable with any "engineering" programming language.
In fact, optimum use of engineering units is a very significant
computer science research topic.

Since engineering units are essential for good engineering practice,
some capability should be considered a requirement. Simple unit
checks will accomplish most of the intent expressed in the above
ideal capabilities. While this requires storage of units associated
with all program input and output, the additional overhead is well
worth the error reduction and program documentation associated
with the units. In fact, units should be stored for all the variables
in the data dictionary even if some variables are not explicitly
intended for input or output.

2.4 Overall Programming Scheme

Data dictionary support depends on a central memory allocation of
variables through COMMON blocks of arrays. Single variables in the
program are EQUIVALENCEd to elements in the appropriate array.
Variable name and units are described in other arrays that have a
one-to-one element correspondence and form the entire data
dictionary (database). While the EQUIVALENCE statements are
required for each variable used in a routine, only one routine and set
of code is required to set up the variable names and units. A
sophisticated library of support routines manages named input and
output from the data dictionary arrays.

Data Dictionary 7

3.0 Detailed Basic Data Dictionary Design

This section covers requirements for a basic data dictionary
implementation. Only the application programmer and user details
are discussed; this is not a detailed description of the support
routines. Information in this section contains all of the information
necessary to use the support library for data dictionaries in a
program.

3.1 Main Program Requirements

In this scheme all program variables that are accessed through the
data dictionary are declared as arrays in various COMMON blocks.
Individual variables are located in these arrays by EQUIVALENCE
statements. The EQUIVALENCE statements can be entered once as
program code and re-used as necessary in the subroutines. In a
program dealing with any large amount of numbers, it is convenient
to allocate the variable memory as several COMMON blocks. Here is a
example of COMMON block allocation:

PARAMETER (MREALP=100,MINTP=30,MLOGP=8, CLENGTH=20, MCHARP=40
LOGICAL LOGS (MLOGP)

CHARACTER*CLENGTH CHARS (MCHARP)

COMMON /CREAL/ARNUMS (MREALP) ,MREALS

COMMON /CINT/INUMS (MINTP) ,MINTS

COMMON /CLOG/LOGS, MLOGS

COMMON /CCHAR/CHARS, MCHARS

DATA MREALS/MREALP/,MINTS/MINTP/,MLOGS/MLOGP/, MCHARS/MCHARP /

Notice that variables are also separated by type. FORTRAN 77 does
not define COMMON blocks for character variables mixed with other
types. This makes segregation of variable types a good practice.

Character variable allocation here is shown in an extremely
simplified form. Normally, character variables are of variable
length, which requires a more sophisticated psuedo-record and
indexing arrangement for the data dictionary. Usually, character
variables do not need to be part of the variable dictionary, although
they are required for variable names, descriptions, and units.
Techniques for handling variable-length character string storage
will be discussed in the Advanced Concepts section (4.1).

Data Dictionary 8

3.1.1 COMMON Block Definitions

This is a list of COMMON block definitions for variable storage in the
data dictionary. If some variable types are not needed in a

particular program, their COMMON blocks should be defined with
array sizes of unity.

! SINGLE PRECISION REAL
! UNITS AND LABELS
! DOUBLE PRECISION REAL

COMMON /CREAL/SRNUMS (MREALP) ,MREALS !

COMMON /CREALU/SRUNS, SRLAB !

COMMON /CDOUB/DRNUMS (MDOUBP) , MDOUB !

COMMON /CDOUBU/DRUNS, DRLAB ! UNITS AND LABELS
COMMON /CCOMP /CNUMS (MCOMPP) , MCOMP ! COMPLEX

COMMON /CCOMPU/COMPUNS, COMPLAB ! UNITS AND LABELS
COMMON /CINT/INUMS (MINTP) , MINTS ! SINGLE PRECISION INT.
COMMON /CINTU/IUNS, ILAB ! UNITS AND LABELS
COMMON /CLOG/LOGS,MLOGS ! LOGICAL

COMMON /CLOGU/LUNS, LLAB ! UNITS AND LABELS
COMMON /CCHAR/CHARS, MCHARS ! CHARACTER STRINGS
COMMON /CCHAR/CHARUNS, CHARLAB ! UNITS AND LABELS

3.2 | Program Routine Requirements

The data stored in the COMMON blocks is referenced in two separate
ways: in the program itself through EQUIVALENCE statements, and
by the user through the data dictionary routines. Strictly speaking,
the variable name that the program uses does not have to be the
same name that the user deals with. However, it is important that
the names be consistent. If it is necessary to deal with alternate
names (for example, an old database input that uses different
variable names for a different program), an aliasing or substitution
capability can be implemented. That is discussed in Section 4.

3.2.1 Variable Access in the Program

The program routines use variables in the data dictionary by defining
EQUIVALENCE statements. For consistency, the routine variable
name should be the same as the data dictionary name. Here is an
example of a layout for setting up the real variables:

SUBROUTINE TESTEM

PARAMETER (MREALS=100)

COMMON /CREAL/RNUMS (MREALS)
EQUIVALENCE (ARNUM(1) ,START)
EQUIVALENCE (ARNUM(2) ,STOP)
EQUIVALENCE (ARNUM(3) ,CNBETA)
EQUIVALENCE (ARNUM(4) ,CLIFT)

Data Dictionary 9

EQUIVALENCE (ARNUM(99) ,DOINIT)
STOP=START+100.

CNBETA=DOINIT

CLIFT=DOINIT

RETURN

END

Notice that, while the COMMON blocks describe the entire memory
allocation, only those variables that are used from the data
dictionary need to have EQUIVALENCE statements. The corollary is
that, if the data dictionary is altered, EQUIVALENCE statements in
affected routines should be updated. This is an excellent application
for a computer-aided software engineering tool.

Although many EQUIVALENCE statements are required to get access
to the data dictionary, modern text editors (such as TPU or even EDT
on VAX computers) can automate much of the chores in creating that
part of the code. This part of the data dictionary scheme is actually
very easy, since there is a one-to-one correspondence to a defined
memory location (array element) for every variable. Each program
should have a central set of code that includes all of the
EQUIVALENCE statements and acts as a control for program updates.
That routine is described in the next section. However, it is worth
noting here that, even if the EQUIVALENCE statements grow to a
large number of lines, text copying and differencing utilities provide
a quick way to incorporate the appropriate changes in all the
routines in a program. The use of advanced aliasing and substitution
techniques can also alleviate maintenance effort in a program with a
data dictionary of this type.

3.2.2 Programmed Variable Access for the User

In this scheme, a pivotal subroutine is used by both the main
application and the data dictionary routine library to set up the
variable name correspondence for input and output. This routine is
called 'DORF', which stands for Dictionary Organization Reference
Function. DORF contains all the variable EQUIVALENCE statements
for the COMMON blocks. It also contains the DATA statements that
set corresponding character string arrays to the variable names used
in the program, as well as storing the variable units. This one-on-
one correspondence is best shown by simple example:

SUBROUTINE DORE

PARAMETER (MREALS=4)
CHARACTER*24 SRLABS (MREALS)
CHARACTER*10 SRUNS (MREALS)

Data Dictionary 10

COMMON /CREAL/SRNUMS (MREALS)

COMMON /CRUNS/SRUNS, RLABS

EQUIVALENCE (SRNUM(1) ,START)

EQUIVALENCE (SRNUM(2) ,STOP)

EQUIVALENCE (SRNUM(3) ,CNBETA)

EQUIVALENCE (SRNUM(4) ,CLIFT)

DATA SRLABS(1) /'START'/, SRUNS(1l) /'SEC'/
DATA SRLABS(2) /'STOP'/, SRUNS (2) /'SEC'/
DATA SRLABS(3) /'CNBETA'/, SRUNS(3) /'l/DEG'/
DATA SRLABS(4) /'CLIFT'/, SRUNS(4) /'NONE'/
RETURN

END

This routine constitutes the actual data dictionary. Support
routines read this database to read or write data to the proper
elements of the various arrays.

This is a simplified example, so some details have been left out. For
example, in scanning the dictionary, there is a different array of
names for each type of variable. The support routines must scan
each name array to determine the type of the variable. Also, if the
scanning is to proceed quickly, the names must be presorted for fast
searching operations. Additional memory is needed for the integer
indexing arrays, and that should be allocated in DORF. Of course,

this operation will not alter the storage order specified by the user
(which may be determined by other considerations).

3.3 Basic File Variable, Array, and Table Input

Assuming that a variable name has been defined for the program, it
can be used in the input stream to define the variable value. Also,
data functions can be entered which describe data bases and
relations associated with variables in the data dictionary.
Additionally, it will be useful to define vectors and arrays within
the data dictionary storage space.

Functional input must be well defined so the correct variables are
associated with the input table structure in the right way. This is a
complex definition that will be provided elsewhere. Function input
formats are discussed in the AlphaZulu Data Format specification.
As a matter of course, the input stream should flag the appearance
of a function. Also, while it is practical to enter variables and
simple functions interactively, it is unlikely that multi-dimensional

Data Dictionary 11

tables will be entered outside of a specialized function editor
program.

For full flexibility, the input stream could be a mix of data
dictionary references, AZDF functions, FORTRAN namelist type input,
or the old-style fixed format or card image input lines. The only
normal restriction on this type of input is a requirement for text
data (no embedded binary data) since it is intended for direct
editing. Given that, it is natural to define comment text capability.
These are all handled using a scheme that has roots in the namelist
input environment. Namelist input is set off by special characters
and key words. Here is an example of namelist input:

SCONTROL
TITLE='TESTTO002AA’,
INTERVAL=1,
RESET=.TRUE.,
START=10.2,
STOP=14.5

SEND

The namelist input stream is delimited by the dollar signs. The
indentation is not required. The first dollar sign is followed by a
label which identifies the particular namelist declaration in the
program. Either a dollar sign or an ampersand (&) may be used as a
delimiter. Most compilers require the delimiters to be the first
character on a line.

The AlphaZulu Data Format uses special characters as well.

Function header information is denoted by a '>' as the first nonblank
character on a line. Component information is denoted by a '+' as the
first nonblank character on a line. Text lines which don't meet these
tests are interpreted as comments associated with the preceeding
header line for the most part.

Input through the data dictionary definitions will use the '<'
character for a delimiter. The beginning delimiter will be '<SET', and
the ending delimiter will be '<ENDSET'. Since comments are needed
anywhere in the input, the ' (exclamation point) is defined as the
comment delimiter. Characters following the 'I' are not interpreted,
and a single line between the data dictionary inputs can be a
comment if '!' is the first nonblank character. This is a sample data
dictionary input:

<SET
INTERVAL=1, RESET=.TRUE.

Data Dictionary 12

START=10.2 SEC

STOP=14.5 SEC

ARRAY (2, 5) =STOP
<ENDSET

Unlike the namelist input, a comma is only needed to separate two
assignments on the same line. While data dictionary input should
allow some arithmetic, only simple assignments are part of the
basic definition. In other words, a mathematical parser is left as a
later enhancement since it requires another level of memory
allocation, and probably some of the features of advanced data
dictionary design covered in section 4.0.

Note that there is another difference with the namelist example.
The character variable assignment is not shown. Units are attached
to some of the variables, too. Blank characters separate constants
or variable names from units, which is similar to the way the
numbers would be written. Units may be delimited differently when
a mathematical parser is designed, especially if the FORTRAN
equation syntax is used.

3.4 Basic Interactive Variable and Table Editing

Once the program has a list of defined variable names, and a means
to locate the variable in the COMMON block, interactive variable
editing and table editing is an extremely simple operation. This is
basically equivalent to entering the assignment string and calling
the assignment interpreter used for file input. However, error
handling must be recoverable for the inevitable typographical errors.
It is not acceptable for the program to show the error and stop. This
should be handled by the input routines provided as part of the data
dictionary system.

Interactive use also requires simple listing capability from the data
dictionary. The user should be able to query for current variable
values and for variable names. The user must be able to perform
searches on names or values (or both) for those applications with
large dictionaries and/or arrays. These capabilities should also be
provided by the data dictionary routines. More detail than this
requires design of the actual data dictionary routine library, which
will not be covered here.

Data Dictionary 13

4.0 Advanced Data Dictionary Design

Section 3 described the capabilities and features of a simple data
dictionary design. It is possible to greatly augment the data
dictionary concept with a few more programming techniques. These
techniques are mainly transparent to the application programmer,
but require a high level of sophistication in the routines supporting
the data dictionary.

4.1 Variable Length String Storage in FORTRAN

The scheme described here is very similar to a stack-oriented string
allocation within an emulated disk or block memory allocation.
Memory is allocated in the form of a vector of fixed-length
character strings:

PARAMETER (MCSTOREP=1000,LSTR=100)
CHARACTER*LSTR CSTORE (MCSTOREP)
DATA MCSTORE/MCSTOREP/

COMMON /STRSTORE/ CSTORE

Pointers are used to access any string in the storage array.
INTEGER ICSTORE (MCSTOREP, 3)

Where: ICSTORE(l,1) = Pointer to array element containing first
character in string.
ICSTORE(l,2) = Pointer to character position of first
character of string in buffer
CSTORE(ICSTORE(l,1))
ICSTORE(l,3) = Length of the string

Storage is allocated from low to high indices. When the string index
results in a reference to memory outside the fixed buffer (virtual
disk), then an attempt must be made to clear out deleted strings.
Deleted strings are marked with a control character, decimal 12
(formfeed) in the first character position. The remaining strings are
packed into low vector addresses, a process called garbage
collection. If the string still cannot be stored, an error condition
has occurred.

On occasion, it is necessary to store arrays of variable-length

character strings. In that case, another layer of indirection is added
and the scheme operates in a similar manner. It should be mentioned

Data Dictionary 14

that a separate storage area, or virtual disk, is created for every
category of string variable. For example, one string array would be
created for data dictionary variable names, another for temporary
variable names, and so on.

4.1.1 Variable Aliasing and Wildcards

There are many circumstances where it is useful to refer to the
same program variable by several names. For example, large input
data sets may contain outmoded variable names in the input that
would be tedious to change to the new naming convention. Another
case may arise where the program is to be applied to several
permutations of the same input, where it is more convenient to re-
route numbers by alias than to edit the data stream. Perhaps the
most important application is in allowing the programmer to input
variables using the same variable names as the program code, while
the user is encouraged to use more descriptive input variables. Of
course, an experienced user could even define shorthand input
variable names and save some input effort.

Aliasing can be implemented a number of ways, depending on memory
limitations. The simplest technique is to allocate a pointer array
that describes lists of names for each variable in the data
dictionary. The routines for accessing string lists provide most of
the functions for this scheme. Alternatively, the variable names are
altered to build linked lists of alias names, and the program detects
the links from the context of the name itself.

The scheme for building linked lists of variable names is simple,
although it requires its own set of support code. For example, a
special character is appended on the first variable name, the
vertical bar (|). Alias names are appended after the vertical bar.
An example of three alias names on a root name would be the string
"CL|LiftCoef|Cl|CoefLift".

Finally, it is extremely useful to provide a wild card capability in
variable names. Wild cards are special characters that allow
substitution in matching variables names. Common wild cards are
the ™', which substitutes for any number of characters, and '?',
which substitutes for any single character.

Some examples of wild cards follow:

Data Dictionary 15

Pattern Matches

CcL* CLMAX CLmax CLFlap CL
*Flap CLFlap Flap CDFlap
A*D AD ABD ABCFD

CL? CL1 ClD

CL?4 CLE4 CL44

CL?? CLE4 CLAA

?D cD AD

Wild cards should be available to the user to do searches or listings
of variables in the program. On input, wildcards would give the
ability to read variables with extra information such as run numbers
(eg RMB134).

4.1.2 Interactive Variable Allocation

Efficient string allocation methods allow allocation of ‘extra’
variables for performing analysis beyond a basic program's
capabilities. This is useful for a number of features, such as
function evaluation, group references, or command files (to be
discussed later).

Error detection and quality control requires a declaration of new
variables in the input stream. Declaration of vectors and arrays is
not defined here. Simple variables require a declaration of type,
precision, and name. In a non-interactive input stream, a special
command is used to allocate a variable, as shown.

{define} YawCoef SREAL
{define} Title STR 42

The first word is the command, the second is the name, and the third
is a keyword describing type and precision of the variable. String
variables have a fourth word (third parameter) that declares the
length of the string. This list covers the normal range of FORTRAN
data types:

KEYWORD TYPE AND PRECISION

SREAL Single precision real

DREAL Double precision real

COMP , Complex

SINT Single precision integer
DINT Double precision integer
LOG Logical

Data Dictionary 16

CHAR Single character
STR Character string

4.2 Text Description of Variables

So far, the data dictionary encompasses definition of variables for
the program and not the user of the program. The user should have
the ability to obtain helpful text describing each variable. This
improves the learning curve for new users and improves the quality
of the work done with a program, particularly if it is used in an
interactive manner.

Although facilities for character string lists discussed so far lend
themselves to implementing descriptive text, experience shows that
use of variables tends to change rapidly compared to the frequency
of program updates. In other words, the variable usage texi, if
encoded in the program, would quickly become outdated, or require
frequent (expensive) compiling and debugging of the program.

Since the variable names are available to the program already, it
should be sufficient to provide routines to access and display
descriptive text from data files. This way the program does not
have to be updated every time a variable description changes. In
fact, this facility should also provide usage information on the
program itself. The variable names could be used by the program to
perform searches on a single "help” file that contains the program
help and the variable descriptions that could be displayed for the
user.

The scheme favored here is to use special characters to set off the
variable names in the text file. This way the descriptive text is
located unambiguously. The pound sign, '#, is favored since it is
rarely used in text and it is visually easy to locate (eg #CLMAX#).
The end of the descriptive text should be set off by a null variable,
"Hit

4.3 Journaling

Interactive programs offer several advantages to the user as long as
the computer, program, or user operate correctly. Given one error,
however, the results can range from crashing the computer to a
simple error that may be difficult to trace back to the input or the
operation of the program. One technique that helps solve these
problems is called “journaling”. Any action that is related to setting

Data Dictionary 17

input or performing computation is echoed to a special journal file.
This file survives even the worst of machine crashes, enabling the
user to reconstruct events leading up to a disaster. Even an ordinary
machine crash (due to some other cause) does not cause the loss of
hours of work.

The best journal file implementation is a "reversible” journal. In
other words, the journal file can also be input to the program to
reproduce the interactive work of the user. The user should have the
option of picking up the work at that point. Given this capability, it
is a simple matter to run an analysis interactively and then edit the
journal file to do the same analysis on other data in a "batch"™ mode.
Journal files of this nature are generally called command files,
since the user will use them in a batch sense more than in the error
recovery sense (hopefully).

The guidelines for data input established earlier provide the
specifications for journal file input recording formats. New
guidelines are only required for command recording. It is desired
that commands be delimited in a manner that fully describes any
tree structures present in a menu scheme. For this scheme,
commands are delimited by curly brackets, with tree structure
separated by the back slash character. For example:

{FILE\READ}
<SET
INFILE="GOOD.DAT"
<ENDSET

Command file capability leads naturally into two useful features.
First, the user should be able to interactively execute command
files. Second, command files add functionality to a program with
interactive function execution capability. For example, if the user
can enter and execute formulas interactively (which implies run-
time variable allocation), then the command files can be written as
general routines and called in the same manner as native functions
of the program.

4.4 Input Error Detection
As a further expansion on the ideas presented in Section 4.3, the
features of run-time function definition and evaluation can be

applied to improve input error detection. Simply put, each input
should lie within reasonable bounds. Sometimes the bounds are very

Data Dictionary 18

well defined, in which case the input is compared against some .
constant values. |t is also necessary to be able to determine if a
variable is a reasonable sign, to compare reasonable magnitude and
sign dependent on other variables, and to specify what error
messages and actions will be taken if an error is encountered.

4.5 Group References

Group referencing is a very powerful capability that allows passing
large arbitrary collections of variables to functions. This technique
is commonly called data structuring in computer science. The
technique promotes efficient and correct handling of data, and it
provides a flexible shorthand for data manipulation, input, and
output. It is most useful when it is available in an interactive or
command file driven manner.

The technique requires the capability to create named lists of
variables, which is essentially a simple variation of the basic string
variable allocation previously discussed. It is also necessary to
allocate and define names for the data groups. Here is an example of
a data reference definition:

{define/group} AeroCoef

LiftCoef

DragCoef

SideFCoef

PitchCoef

YawCoef

RollCoef
{define/endgroup}

Notice that types and units are not required since the variables
should already be defined in the usual manner.

451 Interactive Initialization by Reference

It is often helpful to be able to stop a computation, save
intermediate results, or initialize a computation using a simple
command. This is difficult to do in a flexible and concise manner
unless the group reference feature is available. Since group
references allow access to any variable in the data dictionary, it is
only necessary to implement functions that save, load, and initialize
variables by group reference. This is a fairly trivial option. It must
be emphasized that file manipulations should preserve the command

Data Dictionary 19

file structure so that the user can understand and use the results of
group reference manipulation.

452 Interactive Output Definition

The data dictionary schemes provide an extremely flexible means of
entering data to a program, verifying data reasonableness, and
manipulating data. However, since the advanced features discussed
so far are required to properly do data output, the output features of
a data dictionary scheme must also be classed as advanced
techniques. However, this is one of the most desirable capabilities.
If processed data cannot be output or stored in a flexible manner,
then effort and resources must be expended to do simple output
changes, and the reprogramming involved increases risk of endemic
program error.

The range of output schemes is so tremendous that they are beyond
the scope of this paper to deal with in detail. The type of output
desired drives interactive output specification so completely that a
simple example would also be a useless example. Instead, it is
better to concentrate on the chief issues that would drive the
interface design.

Primarily, what sort of output is to be specified? If it is necessary
to produce computer files equivalent to printed output, then page
layout functions are needed. Functions are required that specify the
page size, margins, number of lines per inch, number of characters
per inch, where and what text will appear on the page, and the output
fields for data from the program. The specification of variable
groups to associate with the output is a small part of this. If data
files for random access are to be produced, then the output
specification commands are different, as they would be for plot
output.

Other questions should be asked. Should the output be device
independent? Should some standard data file format be supported?
Should layout be interactive, or through a mouse? How are control
characters and escape sequences supported? Are graphics
supported? Detailed design of the output formatter is driven by
these matters.

Data Dictionary 20

4.6 Program Data Tracing

Most FORTRAN programming systems (compilers, linkers, libraries,
and so on) are supplied with a program called a 'debugger'. This runs
the FORTRAN program and allows interactive inspection of variables,
single-line execution of the program, setting of breakpoints in the
program, and so forth. While this is, in fact, a viable alternative for
many data dictionary functions, it has three major drawbacks: the
debugger cannot be extended to offer the other functions mentioned
here, it does not support variable units, and it requires a high level
of expertise in FORTRAN to understand and use well.

It is possible to implement many of the debugger functions through
the data dictionary, and several more besides. Use of a "tracer"
subroutine call in important sections of code can provide

information on variables in an interactive or batch manner. Since all
important variables should be available in the data dictionary, it
would be possible to display any variable of interest without re-
programming the tracer routine. It could be made generic and part of
the data dictionary library.

The tracer call should provide many useful functions:

1. Interactive or batch reports on changed variables. The
variables should be selectable.

2. Interactive or batch reports on running time between tracer
routine calls.

3. Setting of breakpoints at tracer call locations.

4. Display of tracer call locations. '

The last capability really requires that a location label is supplied
to the tracer routine. A sample tracer routine call:

TRACER('GMOD', "INIT', 'GEAR MODEL ROUTINE INITIALIZE')

The first string is the subroutine or function name, the second is a
sub-level label, and the third is a descriptive string.

Data Dictionary 21

